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What Does Database Performance Mean?

- How efficiently a database processes queries and handles workloads.

How do we measure performance?

- Query response time
- Throughput 
- Resource utilization 

- CPU
- Memory and 
- Disk I/O
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A well-performing database should

- Execute queries quickly, even under heavy load.

- Efficiently handle concurrent user requests.

- Maintain low latency while reading and writing data.

- Scale effectively as data grows
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Performance Tuning vs. Performance Optimization – Are They the Same?

- Performance Tuning

- Adjusting database settings to improve efficiency.

- Performance Optimization

- A broader approach that includes design changes, indexing strategies, query rewriting, and resource management.

In practice, many people use these terms interchangeably, but tuning is often reactive, while optimization is proactive.
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Which Businesses Need High-Performance Databases?

- High-Traffic Applications
- E-commerce, social media

- Real-Time Analytics & Monitoring
- Financial trading, IoT apps

- Low-Latency Requirements
- Gaming, telecommunications, ad tech

- Large-Scale Transactional Systems
- Banking, payments

In banking, where even a tiny data loss is unacceptable, sometimes data integrity takes priority over performance
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Balancing Performance vs. Cost – When to Scale vs. When to Enhance Hardware

When to Optimize First

- Slow Queries & Inefficient Indexing
- EXPLAIN ANALYZE

- High Connection Overhead
- Connection pooling

- Table Bloat & Dead Tuples
- Tune autovacuum

- Unoptimized Workload
- Partitioning 

When to Scale or Upgrade Hardware

- CPU Bottlenecks
- Memory Constraints
- Disk I/O Issues
- High Availability & Load Distribution
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Indexes

- Indexes in PostgreSQL are special database objects that improve the speed of data retrieval operations on a table.
- CREATE INDEX index_name ON table_name (column_name);

Types of Indexes

- B-tree
- The default and most commonly used type, ideal for equality, range and Pattern queries.

- Hash
- Useful for equality comparisons.
- They use a hash function to directly locate the desired value, avoiding the need for tree traversal. 
- explain analyze SELECT * FROM orders WHERE customer_id = 10;
- explain analyze SELECT * FROM orders WHERE customer_id > 0 AND customer_id < 10;
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Types of Indexes

- GIN (Generalized Inverted Index)

- Efficient for indexing composite values, such as arrays.

- BRIN (Block Range INdex)

- Compact indexes that are efficient for large tables where the data is naturally ordered.

- GiST (Generalized Search Tree)

- Can handle various types of queries, including geometric data.
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Partial Indexes

- Partial indexes are indexes that include only a subset of rows in a table, based on a specified condition.

Benefits

- Reduced Index Size

- Smaller index size compared to a full index, leading to lower storage requirements.

- Improved Performance

- Faster index scans for queries that match the index condition.

- Efficient Maintenance

- Less overhead for index maintenance operations like updates and inserts.
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Indexing Best Practices

- Use composite Indexes

- If your queries often filter by multiple columns, consider creating a composite index order.
- NOTE: The order of columns in a composite index matters. Place the most selective column first.

- Avoid Over-Indexing
- Avoid Over-Indexing Each index adds overhead for insert, update, and delete operations. 

- Use Indexes for Foreign Keys
-  Index foreign key columns to speed up join operations.

- Avoid index
- If workload is write heavy and perform relatively few read operations.
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Success Story: Optimizing Complex Queries for a Customer 

Challenge

- Customer had a batch of three large queries (500+ lines each) that took 32 hours to run in production.

Our Approach

- Analyzed queries to identify the common filters used in WHERE clauses.
- Created targeted indexes to optimize filtering and reduce scan times.
- Avoided direct query modifications to ensure business logic remained intact.

Results

- Batch completion time reduced from 32 hours to 7 hours 18 minutes – a 4.3x improvement!
- Business logic remained untouched while achieving massive performance gains
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Partitioning 

- A technique to divide a large table into smaller, more manageable pieces.

Types of Partitioning

- Range Partitioning
- Data is divided based on a value range (e.g., date ranges).

- List Partitioning 
- Data is split based on specific values (e.g., country names).

- Hash Partitioning 
- Data is distributed based on a hash function (e.g., even distribution).

When to Use Partitioning?

- When dealing with large tables (millions or billions of rows).
- When queries frequently filter on a column (e.g., date-based filtering).
- When archiving or deleting old data is required efficiently. 
- Blog: When HASH partitioning works better than RANGE
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PostgreSQL Parameter Tuning

Adjust configuration settings to optimize database performance based on workload requirements

- Memory Parameters
- Parallelism Parameters
- JIT-Related Parameters
- Connection-Related Parameters
- Autovacuum Parameters

Blog 1: Important PostgreSQL Parameters: Understanding Their Importance and Recommended Values

Blog 2: Leveraging autovacuum in PostgreSQL to optimize performance and reduce costs
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Just-In-Time (JIT) Compilation

JIT (Just-In-Time) compilation optimizes query execution by compiling parts of SQL queries into native machine code at runtime.

Which Queries Benefit from JIT?

- Queries with heavy aggregations (e.g., SUM(), AVG(), COUNT() on large datasets).
- CPU bound queries

When JIT Can Overburden You?

- Short, simple queries 
- Overhead of compilation outweighs performance gains.

- To many joins
- If your query involve to many joins do not use JIT 
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Just-In-Time (JIT) Compilation

NoteL: Setting JIT parameters too aggressively or too low can have drawbacks. 

- Lower values enable more JIT compilation
- Higher values keep it selective. 

So, if set too low, unnecessary parts of the query may be compiled, potentially increasing execution time instead of improving performance.
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Just-In-Time (JIT) Compilation

When not to use JIT

While JIT = off

- Planning Time: 26.136 ms
- Execution Time: 7.888 ms

While JIT = on

- Planning Time: 27.201 ms
- JIT:

- Options: Inlining true, Optimization true, Expressions true, Deforming true
- Timing: Generation 96.421 ms, Inlining 14.554 ms, Optimization 8423.264 ms, Emission 20500.050 ms, Total 29034.289 ms

- Execution Time: 29091.121 ms

Query structure

- Hundreds of nested joins
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Caution: JIT is not effective for queries with multiple complex joins, so it is best to avoid using it in this scenario.
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EXPLAIN and EXPLAIN ANALYZE

- EXPLAIN 
- Shows the execution plan PostgreSQL intends to use for a query without running it.

- EXPLAIN ANALYZE
- Executes the query and provides the actual execution plan with runtime statistics.

- Key Difference: EXPLAIN estimates the plan without executing, while EXPLAIN ANALYZE runs the query and shows real execution details.

Caution: Avoid running EXPLAIN ANALYZE on modification queries (INSERT, UPDATE, DELETE) unless you are sure, as it will execute the query.
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EXPLAIN ANALYZE: Scenario 1

02 PostgreSQL Performance Optimization



EXPLAIN ANALYZE: Scenario 2
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EXPLAIN ANALYZE: https://explain.dalibo.com/
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