
Protecting PII
&

AI Workloads
in PostgreSQL

PGCONF 2024 || Kathmandu University

DEV RAJ GAUTAM

Secured Apps

Unsecured Database

The Unsecured Core of the Modern Stack

Securing Database & Data is Equally Important

Front Door Back Door

Agenda

• Introduction: Why PII & AI Security Matters

• Understanding PII in PostgreSQL

• Introduction: Why PII & AI Security Matters

• PostgreSQL Security Capabilities

• Anonymization & Data Masking Techniques

• Handling AI Workloads Securely

• Compliance Mapping & Audit Trails

• Q&A and Wrap-Up

About Me

CQI IRCA Certified Management System Auditor
Information Security
Personal Information

Artificial Intelligence *PECB

Experience in Leading and Managing Projects (10+)
Registered Scrum Master

MBA , MSCIT

15+ Years of Industry Experience
Developer, Team Lead, Researcher

Row Level Security

• Scenario

• An queries AI training data in user_profiles. They return names,

emails, and embedding vectors for all users.

• Problem

• Data Leak

• Solution

• RLS by user, roles and other objects.

• Enable RLS on user_profiles WHERE user_id = current_user

Column-Level Protection

• Scenario

• A shared PostgreSQL database holds email, phone, and national ID,

which are used in an AI model and queried by analysts across

teams.

• Problem

• AI pipelines process raw PII

• Analysts can query or export sensitive data

• If the DB is hacked or backed up improperly — all PII is leaked

• Solution

• Use pgcrypto for column-level encryption

pgp_sym_encrypt(national_id, key)

• Decrypt only when needed — with access control + audit

Limit By Role

• Scenario

• You have multiple teams using the same PostgreSQL instance Data

Scientists, Business Analysts, Backend Developers. All roles

connect to the same database; many have broad read access.

• Problem

• Developers can see user emails

• Analysts can access salary or health info

• AI pipelines run with superuser privileges

• Solution

• Create granular roles: analyst_read, dev_basic, ml_pipeline

• Grant access only to needed tables/columns

• Use SET ROLE and session auditing for traceability

Anonymize Before you Analyze

• Scenario

• Marketing team requests user data to analyze trends. Data includes

age, zip code, and purchase history tied to names.

• Problem

• Analysts don’t need real names or emails

• Combining zip, age, and gender can re-identify users

• Risk of exposing PII during model training or sharing

• Solution

• Apply pseudonymization (user_id → token)

• Apply anonymization (name → NULL, zip → region)

• Use views or transformation scripts before exporting

Know Who Touched It

• Scenario

• An AI pipeline fails and needs retraining. A developer reruns a data

export script on the customer_insights table, which includes

purchase history and emails. Later, a CSV of raw customer PII is

found on the dark web; no one knows who exported it.

• Problem

• No access trail for data exports

• No visibility into how sensitive data was used

• Solution

• Enable pgAudit to log read/write access to PII tables

• Use native logs to track export scripts, session activity

• Correlate logs with roles and users for full traceability

Securing Vector Search with pgvector

• Scenario

• You’re using pgvector to store embeddings from customer support

chats. AI models query nearest neighbors to generate auto-replies.

The vector data still links back to real users and can be reverse-

engineered.

• Problem

• Vectors may encode PII (names, context)

• No constraints on how embeddings are queried

• Potential for model inversion or unauthorized inference

• Solution

• Restrict access to vector tables using RLS or views

• Log and audit AI model access to embedding queries

• Limit query results (e.g., top 3 only) to reduce leakage risk

• Mask metadata linking vectors to user identity

Protect Data in Transit with SSL/TLS

• Scenario

• An AI dashboard queries user data from PostgreSQL over a public

cloud network. Traffic includes login credentials and customer

records. The connection is unencrypted and vulnerable to sniffing

or man-in-the-middle attacks.

• Problem

• Login credentials exposed

• PII (e.g., names, IDs) can be intercepted

• Solution

• Enforce SSL (ssl = on in postgresql.conf)

• Use sslmode = require or verify-full in app connections

• Implement client certificates for stricter validation

Data Classification First

Level Example Columns Controls

High national_id, card_no
RLS AND pgcrypto,
pgAudit, encrypted
backups

Medium email, age RLS OR masked views,
audit reads

Low aggregates, k-
anonymised ages None beyond RBAC

Encrypted Backups & DR

• Backups often outlive production data—#1 source of breach after prod

• pg_basebackup –K or --waldir + server-side GPG (gpg --symmetric).

• Store keys in KMS (AWS KMS, Hashicorp Vault).

• Disaster-Recovery drill: restore + re-key to prove encryption isn’t

ornamental.

• Automate integrity check: pg_verifybackup.

Performance & Cost Tips

• RLS: add predicate indexes → CREATE INDEX … WHERE tenant_id IS

NOT NULL;

• pgcrypto adds CPU; benchmark with pg_stat_kcache.

• pgAudit: direct logs to csvlog; ship to SIEM—avoid bloating pg_log.

• pgvector: use HNSW index (Postgres 16) + max_connections tuning to

keep latency < 50 ms.

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

