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Why This Talk?

Rise of AI/ML in web applications (eg:  E-commerce)

PostgreSQL's increasing role

Real-time, scalable, efficient data systems are needed

4 PostgreSQL is More Than Just a Relational DB: JSONB, Extensions 

(pg_vector, fdw)



6. Advantages of Partitioning

2. What is pgvector extension

7. Compare with Vector database

4. Use case in AI

Focused Topics

3. Vector Search with pgvector

1. Introduction to vector search

8. Q & A

5. Scaling Challenges

1.Use of pgvector for AI

2.High-Performance Workloads in Postgres with partitioning

Overview of the Talk



Introduction to vector search
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Cosine/Euclidean/Inner Product similarity

What is Vector Search?

Vectors in ML: embeddings 
(NLP, image, recsys)

• method of finding similar items by comparing vector 
representations of data instead of using traditional keyword 

• commonly used in AI, machine learning, recommendations, 
semantic search application, document search

Eg:  "apple" might be encoded as [0.13, -1.23, 2.34, ...]



How Vector Search Works
1.Embed: Use a model (like OpenAI, Hugging Face, or CLIP) to convert 
your data into vectors.

2.Store: Save these vectors in a vector-aware database (like PostgreSQL 
with pgvector, Pinecone,Qdrant,..).

3.Query: Convert the user's query into a vector.

4.Compare: Use cosine similarity, Euclidean distance, or dot product 
to find vectors that are closest to the query vector.



What is pgvector?
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What is pgvector?

pgvector is a PostgreSQL extension 

makes it possible to efficiently store, manipulate, 
and analyze vector data

• Vector Storage

• Similarity Search

AI Integration

NLP: Text embeddings (e.g. OpenAI, 

SentenceTransformers)

Computer Vision: Image embeddings
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AI Integration:

 •NLP: Text embeddings (e.g., 

OpenAI, SentenceTransformers).

 •Computer Vision: Image 

embeddings (CNNs).

Vector Storage: Native vector data 

type for high-dimensional 

embeddings (e.g., 384-dim).

pgvector is a PostgreSQL extension 

that brings advanced capabilities 

for handling high-dimensional 

vector data.

Similarity Search: Supports cosine, 

Euclidean, and inner product 

distances. 

Powers: Recommendation 

systems, clustering, semantic 

search, k-NN queries.

pgvector



Benefits of pgvector

This extension unlocks PostgreSQL’s 

potential for applications such as 

semantic and similarity search, image 
retrieval, recommendation engines, NLP, 

and computer vision tasks.



Vector Search with pgvector
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pgvector: PostgreSQL as a vector database



• Storing embeddings and 
• Similarity search

Vector Search with pgvector

Search Code Snippet:
# Python + psycopg2 example 

query_embedding = model.encode("Nepali traditional dress")  
cursor.execute("SELECT name FROM products ORDER BY 

   embedding <=> %s::vector LIMIT %s", (query_embedding, limit)) 
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Approximation concerns

Not yet suited for billion-scale (but 

great for mid-scale)

Memory usage

pgvector Limitations
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Use case in AI: 

Eg: Recommendation engine for e-commerce





def match_images(image_path, gallery_list):
    # Extract features from the query image
    query_features = extract_features(image_path)

    # Dictionary to store matching results
    highest_match_percentage = {}

    # Iterate over stored features and compare with the query features
    for image_feature in features_db.items():
        features = image_feature.features
        similarity = np.dot(query_features, features.T) / \
            (np.linalg.norm(query_features) * np.linalg.norm(features))
        match_percentage = similarity * 100
        if image_feature.product_id not in highest_match_percentage or \
                match_percentage > 
highest_match_percentage[image_feature.product_id]:
            highest_match_percentage[image_feature.product_id] = 
match_percentage

    # Sort the matched products based on the match percentage (highest to 
lowest)
    matched_products = [MatchedFeature(product_id, match_percentage)
                        for product_id, match_percentage in 
highest_match_percentage.items()]
return matched_products

Alternative to above match_images Code :
# Python + psycopg2 example 

query_embedding = model.encode("Nepali traditional dress")  
cursor.execute("SELECT name FROM products ORDER BY 
   embedding <=> %s::vector LIMIT %s", (query_embedding, limit)) 

The Challenge with Traditional Approaches

Previous MySQL Setup:

•Separate systems for storage and search
•Complex ETL pipelines for vector operations
•Multiple tables/dbs for metadata and binary data
•External search engines for similarity matching

Pain Points:

•High operational complexity
•Performance bottlenecks

•No index support
•Expensive I/O

•Difficult to scale



Old MySQL Approach
Database  → ETL Process → Vector DB → Search Engine

New PostgreSQL Approach
PostgreSQL with all capabilities]

The Challenge with Traditional Approaches

Previous MySQL Setup:

•Separate systems for storage and search
•Complex ETL pipelines for vector operations
•Multiple tables/dbs for metadata and binary data
•External search engines for similarity matching

Pain Points:

•High operational complexity
•Performance bottlenecks

•No index support
•Expensive I/O

•Difficult to scale

PostgreSQL to the Rescue

Why PostgreSQL for AI Workloads?

•Built-in vector support (pgvector extension)

•Store vector as native type

•Index support via ivfflat, hnsw
•JSON/JSONB for flexible schemas
•Full-text search capabilities
•Image/vector similarity search
•All in one database system
•Fast similarity search (<->, cosine, inner 
product)



Feature PostgreSQL + pgvector MySQL
Native vector support  Yes (vector type)  No (requires JSON/array hacks)

Vector similarity search  Yes (L2, Cosine, Inner Product)  No native support

Indexing for ANN search  Yes (IVFFlat, HNSW)  No indexing for vectors

Performance at scale  Sub-second for millions of rows  Full scan, poor at scale

Hybrid filtering + similarity  Supported in single query  Needs external logic

Integration with AI workflows  Strong (LangChain, OpenAI, etc.)  Limited, often external tools

In-database recommendation  Yes (efficient + flexible)  No (complex to implement)

Ease of deployment  One stack, fewer moving parts
 Needs external vector DB or 

search engine

Use in production (2025)  Widely adopted (e.g. PostHog)  Rarely used for vector tasks



Use cases:

WEB SERVER



-- Enable pgvector
CREATE EXTENSION IF NOT EXISTS vector;

-- Create a table
CREATE TABLE products (

 id SERIAL PRIMARY KEY,
 name TEXT,
 embedding VECTOR(512)
);

USE CASE DEMO:

Recommendation engine for e-commerce



seed_data.py
import psycopg2
from sentence_transformers import SentenceTransformer
conn = psycopg2.connect(…)
cur = conn.cursor()
model = SentenceTransformer('all-MiniLM-L6-v2’)
products = ["Dhaka Topi", "Gunyu Cholo", "Khukuri Knife", 
"Thangka Painting", "Singing Bowl"]
for product in products:
    embedding = model.encode(product).tolist()
    cur.execute("INSERT INTO products (name, embedding) 
VALUES (%s, %s)", (product, embedding))
conn.commit()
print("Data seeded successfully!")

Code Snippet



recommendation_engine.py
import psycopg2
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2’)
conn = psycopg2.connect(…)
def get_recommendations(query_text, limit=5):
    query_embedding = model.encode(query_text).tolist()
    cur = conn.cursor()
    cur.execute("SELECT name, embedding <=> %s AS distance 
FROM products ORDER BY distance ASC LIMIT %s", 
(query_embedding, limit))
    return cur.fetchall()

print(get_recommendations("Traditional Nepali dress"))

Code Snippet

NOTE: Cosine similarity (Higher = more similar)
SELECT   name,   1 - (embedding <=> %s::vector) AS cosine_similarity
FROM products ORDER BY cosine_similarity DESC LIMIT %s;



Scaling Challenges
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Slow Queries

Vector search latency

High concurrency

Scaling Challenges: 

Bottlenecks



Solution: 

Partitioning & Sharding

Range/Time-based partitioning.

Hash partitioning



Demo Use case: 

Splitting AI log data by timestamp 

partitioning:

CREATE EXTENSION IF NOT EXISTS vector;

CREATE TABLE ai_logs_non_partitioned (

  id SERIAL,

  log_time TIMESTAMP NOT NULL,

  request_data JSONB,

  response_data JSONB,

  embedding VECTOR(512)

);

CREATE TABLE ai_logs_partitioned (

  id SERIAL,

  log_time TIMESTAMP NOT NULL,

  request_data JSONB,

  response_data JSONB,

  embedding VECTOR(512)

) PARTITION BY RANGE (log_time);

How It Works

1.Parent Table (ai_logs):

1. Acts as a logical container for all partitions.

2. Does not store any data directly.

3. Routes rows to the appropriate partition based on 
the log_time column.

2.Partition Table (ai_logs_2024):

1. Stores rows where log_time is between 2024-01-
01 and 2025-01-01.

2. Physically stores the data for this range.



Advantages of Partitioning
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Easier Data Management: You can 

drop or archive old partitions 

without affecting the rest of the 

data.

Advantages of Partitioning

Improved Query Performance: 

Queries only scan the relevant 

partitions, reducing the 

amount of data processed.
Scalability: Partitioning helps 

manage large datasets by breaking 

them into smaller, more 

manageable pieces.



Illustration

Splitting AI log data by timestamp partitioning:

CREATE EXTENSION IF NOT EXISTS vector;

CREATE TABLE ai_logs_non_partitioned (

  id SERIAL,

  log_time TIMESTAMP NOT NULL,

  request_data JSONB,

  response_data JSONB,

  embedding VECTOR(512)

);

CREATE TABLE ai_logs_partitioned (

  id SERIAL,

  log_time TIMESTAMP NOT NULL,

  request_data JSONB,

  response_data JSONB,

  embedding VECTOR(512)

) PARTITION BY RANGE (log_time);



Without Partition:
-- Insert 1M rows
INSERT INTO ai_logs_non_partitioned (log_time, request_data, response_data, embedding)
SELECT
    NOW() - (random() * INTERVAL '365 days'),
    '{"input": "test"}'::jsonb,
    '{"output": "test"}'::jsonb,
    ARRAY(SELECT random() FROM generate_series(1, 512))::vector(512)
FROM generate_series(1, 1000000);

EXPLAIN ANALYZE
SELECT * FROM ai_logs_non_partitioned
WHERE log_time >= '2024-01-01' AND log_time < '2024-
02-01';



After Partition:
-- Insert 1M rows
INSERT INTO ai_logs_partitioned (log_time, request_data, response_data, embedding)
SELECT
    NOW() - (random() * INTERVAL '365 days'),
    '{"input": "test"}'::jsonb,
    '{"output": "test"}'::jsonb,
    ARRAY(SELECT random() FROM generate_series(1, 512))::vector(512)
FROM generate_series(1, 1000000);

EXPLAIN ANALYZE
SELECT * FROM ai_logs_partitioned 
WHERE log_time >= '2024-01-01' AND log_time < '2024-02-01';



When to Use Yearly Partitions

Queries Spanning a Year: If 

your queries often target an 

entire year’s data, yearly 

partitions are a good fit.

Small Datasets: If your 

dataset grows slowly (e.g., a 

few thousand rows per year), 

yearly partitions are 

sufficient.



When to Use Monthly Partitions

Queries Targeting Specific Months: If your queries 

often target specific months, monthly partitions will 

improve performance.

Large Datasets: If your dataset grows quickly (e.g., 

millions of rows per year), monthly partitions are 

better.
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Compare with Vector database



Comparing Traditional & Vector Databases

Feature pgvector (PostgreSQL extension)
Dedicated Vector DB (e.g., 
Pinecone, Qdrant)

Storage backend PostgreSQL (relational + vector) Purpose-built for vectors only

Similarity search  L2, Cosine, Inner Product
 Advanced similarity search, 

customizable

ANN indexing options  IVFFlat, HNSW (limited tuning)
 HNSW, PQ, IVF, ScaNN, etc. 

(more tuning options)

Query Filtering (metadata + 
vector)

 Built-in (SQL WHERE + vector search)
 Varies; Qdrant/Weaviate 

support it, but syntax differs

Joins, transactions, ACID
 Fully supported (relational DB 

features)
 No joins, limited transactional 

support

Scalability  Good (scale-out via Citus, etc.)
 Excellent (designed for billions 

of vectors)

Ease of integration  Simple if already using Postgres
 Requires separate service and 

sync

Use case fit  Great for AI inside existing apps
 Great for pure vector-heavy 

workloads



Postgres as the AI Foundation
•Embedding search
•LLM metadata + feedback storage
•Event log, feature store
•With:

• pgvector
• timescale (time-series)
• plpython / plrust for in-DB ML

Key Takeaways
 PostgreSQL is AI-ready
 pgvector simplifies similarity search
 Real-time, indexed search with one DB
 Easier, cheaper, scalable vs MySQL + external stack



Q & A
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Thank You
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