

PostgreSQL in the AI Era

PostgreSQL Conference Nepal 2025 | 5–6 May, Kathmandu University

Speaker: Prabin Silwal https://www.linkedin.com/in/prabin-silwal/

Why This Talk?

- Rise of AI/ML in web applications (eg: E-commerce) 1
- PostgreSQL's increasing role 2
- Real-time, scalable, efficient data systems are needed 3
- PostgreSQL is More Than Just a Relational DB: JSONB, Extensions 4 (pg_vector, fdw)

Focused Topics

- 1. Use of **pgvector** for AI
- 2. High-Performance Workloads in Postgres with partitioning

Overview of the Talk

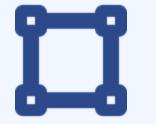
- 1. Introduction to vector search
- 3. Vector Search with pgvector
- 5. Scaling Challenges
- 7. Compare with Vector database

- 2. What is pgvector extension
- 4. Use case in AI
- 6. Advantages of Partitioning
- 8. Q & A

01 Introduction to vector search

What is Vector Search?

- method of finding similar items by comparing vector representations of data instead of using traditional keyword
- commonly used in AI, machine learning, recommendations, semantic search application, document search
- Eq: "apple" might be encoded as [0.13, -1.23, 2.34, ...]



Vectors in ML: embeddings (NLP, image, recsys)

Cosine/Euclidean/Inner Product similarity

How Vector Search Works

1.Embed: Use a model (like OpenAl, Hugging Face, or CLIP) to convert your data into vectors.

2.Store: Save these vectors in a vector-aware database (like PostgreSQL) with pgvector, Pinecone, Qdrant,..).

3.Query: Convert the user's query into a vector.

4.Compare: Use cosine similarity, Euclidean distance, or dot product to find vectors that are closest to the query vector.

02

What is pgvector?

What is pgvector?

pgvector is a PostgreSQL extension

makes it possible to efficiently store, manipulate, and analyze vector data

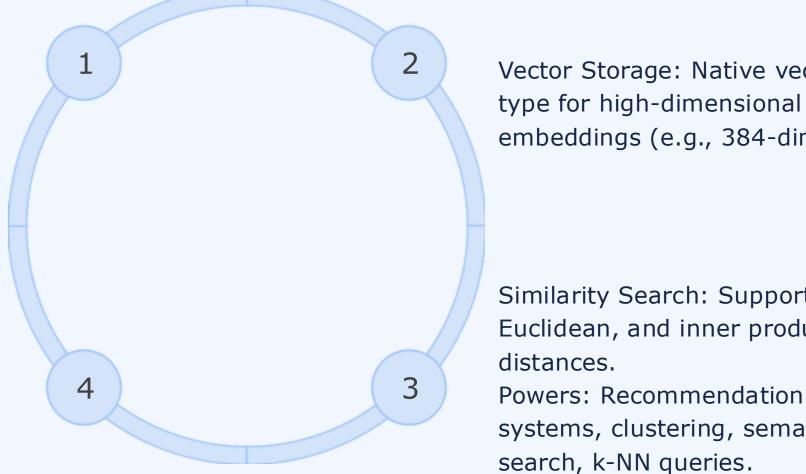
- Vector Storage
- Similarity Search

AI Integration NLP: Text embeddings (e.g. OpenAI, SentenceTransformers) Computer Vision: Image embeddings

pgvector

pgvector is a PostgreSQL extension that brings advanced capabilities for handling high-dimensional vector data.

AI Integration: •NLP: Text embeddings (e.g., OpenAI, SentenceTransformers). •Computer Vision: Image embeddings (CNNs).



Vector Storage: Native vector data embeddings (e.g., 384-dim).

Similarity Search: Supports cosine, Euclidean, and inner product

systems, clustering, semantic

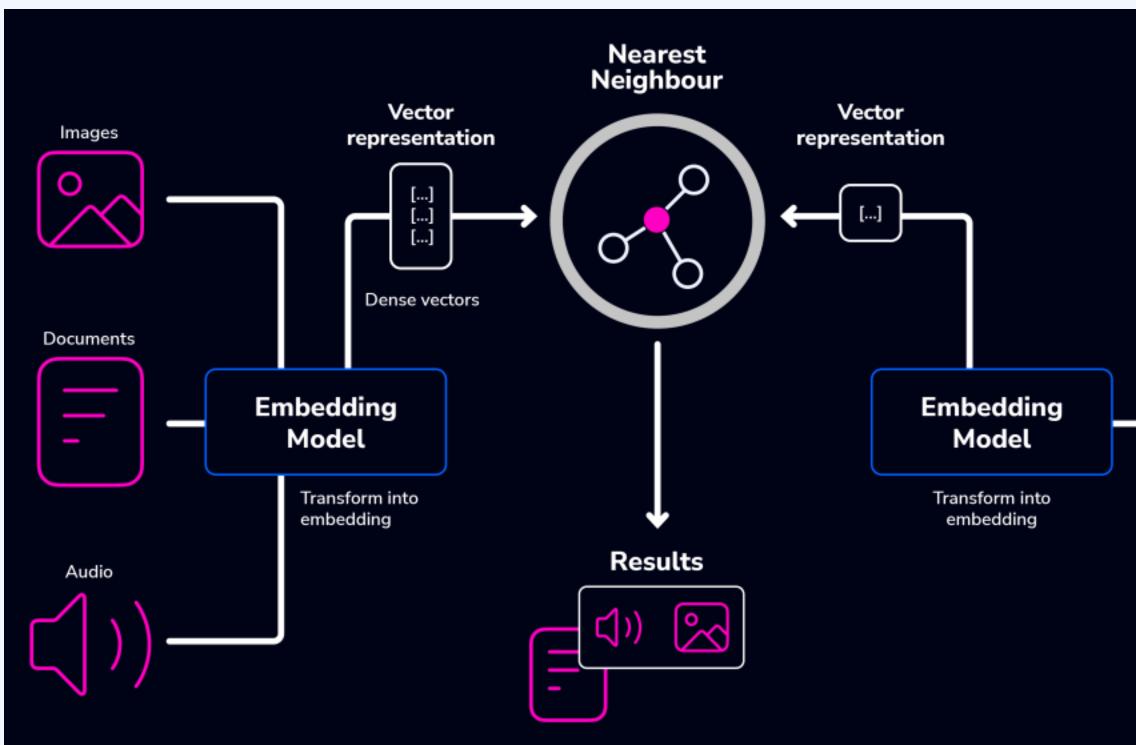
Benefits of pgvector

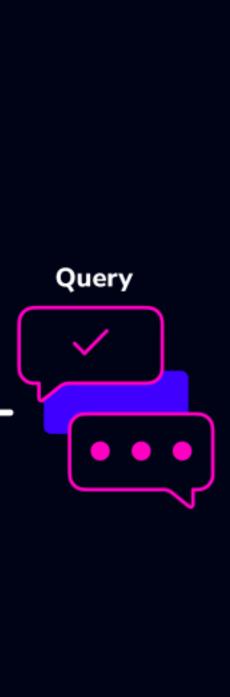
This extension unlocks PostgreSQL's potential for applications such as semantic and similarity search, image retrieval, recommendation engines, NLP, and computer vision tasks.

03

Vector Search with pgvector

pgvector: PostgreSQL as a vector database





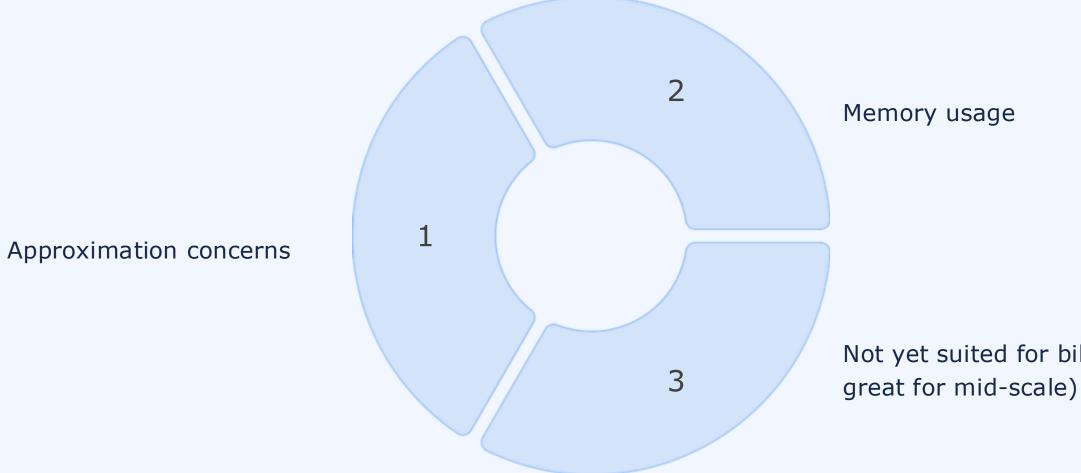
Vector Search with pgvector

- Storing embeddings and
- Similarity search

Search Code Snippet: # Python + psycopg2 example

query_embedding = model.encode("Nepali traditional dress") cursor.execute("SELECT name FROM products ORDER BY **embedding** <=> %s::vector LIMIT %s", (query_embedding, limit))

pgvector Limitations



Not yet suited for billion-scale (but

04

Use case in AI: Eg: Recommendation engine for e-commerce

Name	Last commit
🗅 .vscode	Adffing
🗅 _pycache_	final update with wrapper
🗅 docker	Adffing
♦ .gitignore	adding git ignore
🗼 Dockerfile	changes made
M* README.md	Adffing
🔁 арр.ру	changes made
🗼 docker-compose.yml	changes made
🕒 feed.php	final update with wrapper
🕒 feed2.php	final update with wrapper
{} image_search_cnn-postman_collecti	Adffing
image_search_cnn.py	Adffing
nage_search_open_cv.py	Adffing

README.md

image-search

API ENDPOINTS::

- 1. /extract_store_features: This endpoint expects a POST request with JSON data containing the image_path and produ extracts features from the provided image, stores the features in the database, and returns a JSON response with a message.
- 2. /match_features: This endpoint expects a POST request with JSON data containing the image_path. It matches the features are set of the set o the query image with the stored features in the database, and returns a JSON response with the matched product IC their corresponding match percentages.
- 3. /update_feedback: This endpoint expects a POST request with JSON data containing the query_image_path, correct_matches, and incorrect_matches. It is used to update the matching algorithm based on user feedback. query_image_path: The path or URL of the query image. correct_matches: A list of product IDs that the user confirm correct matches, incorrect_matches; A list of product IDs that the user confirmed as incorrect matches. The endpoir

DEPLOY

DEPENDENCIES:

pip3 install flask requests pillow tensorflow numpy mysql-connector-python

To deploy the Flask application using Gunicorn and Nginx, you can follow these steps: Install Gunicorn and Nginx on your server.

Code

1. app.py (Previously: image_search_cnn_WITH_FLASK.py) Create a new file, let's say app.py, and copy the Flask application code (above code) into it.

Service file

2. Create a systemd service unit file to run Gunicorn. For example, create a file called telaship_image_search.service in the /etc/systemd/system/ directory with the following content:

[Unit] Description=Gunicorn instance to telaship_image_search API After=network.target

[Service] User=root Group=root WorkingDirectory=/var/www/env.telaship_image_search Environment="PATH=/var/www/env.telaship_image_search/bin" ExecStart=/var/www/env.telaship_image_search/bin/gunicorn -workers 3 --error-logfile /var/log/gunicorn/telaship_image_search_api_error.log --access-logfile /var/log/gunicorn/telaship_image_search_api_access.log --bind unix:/var/www/telaship_image_search/api-socket.sock -m 007 -reload api_app:app

[Install] WantedBy=multi-user.target

NOTE: Enable and Start the Gunicorn Service: Run the following commands to enable and start the Gunicorn service:

sudo systemctl enable telaship_image_search sudo systemctl start telaship_image_search

NGINX

3. Configure Nginx to act as a reverse proxy server for the Flask application: Open the Nginx configuration file (/etc/nginx/nginx.conf or /etc/nginx/sites-available/default). Inside the server block, add the following location block to proxy requests to the Gunicorn application:

server { listen 5000; server_name localhost;

location / {

proxy_pass http://unix:/var/www/telaship_image_search/api-socket.sock; proxy_set_header Host \$host; proxy_set_header X-Real-IP \$remote_addr;

}

NOTE: sudo ln -s /etc/nginx/sites-available/telaship_image_search /etc/nginx/sites-enabled/

Save the configuration file and restart Nginx:

sudo service nginx restart

Ĉ

```
def match images(image path, gallery list):
 # Extract features from the query image
  query_features = extract_features(image_path)
```

```
# Dictionary to store matching results
highest match percentage = {}
```

Iterate over stored features and compare with the query features for image feature in features db.items():

features = image feature.features similarity = np.dot(query features, features.T) /(np.linalg.norm(query_features) * np.linalg.norm(features)) match_percentage = similarity * 100 if image feature.product id not in highest match percentage or \ match percentage > highest_match_percentage[image_feature.product_id]: highest_match_percentage[image_feature.product_id] =

match_percentage

Sort the matched products based on the match percentage (highest to lowest)

matched_products = [MatchedFeature(product_id, match_percentage)

```
for product_id, match_percentage in
```

highest_match_percentage.items()] return matched_products

Alternative to above match_images Code : # Python + psycopg2 example

query_embedding = model.encode("Nepali traditional dress") cursor.execute("SELECT name FROM products ORDER BY **embedding** <=> %s::vector LIMIT %s", (query_embedding, limit))

The Challenge with Traditional Approaches

Previous MySQL Setup:

•Separate systems for storage and search

- •Complex ETL pipelines for vector operations
- Multiple tables/dbs for metadata and binary dat
- •External search engines for similarity matching

Pain Points:

•High operational complexity Performance bottlenecks •No index support •Expensive I/O

•Difficult to scale

The Challenge with Traditional Approaches

Previous MySQL Setup:

- •Separate systems for storage and search
- •Complex ETL pipelines for vector operations
- •Multiple tables/dbs for metadata and binary data
- •External search engines for similarity matching

Pain Points:

- •High operational complexity
- •Performance bottlenecks
 - •No index support
 - •Expensive I/O
- •Difficult to scale

Old MySQL Approach Database \rightarrow ETL Process \rightarrow Vector DB \rightarrow Search Engine

New PostgreSQL Approach PostgreSQL with all capabilities]

PostgreSQL to the Rescue

Why PostgreSQL for AI Workloads?

- •Built-in vector support (pgvector extension)
 - •Store vector as native type
 - Index support via ivfflat, hnsw
- •JSON/JSONB for flexible schemas
- •Full-text search capabilities
- •Image/vector similarity search
- •All in one database system
- •Fast similarity search (<->, cosine, inner product)

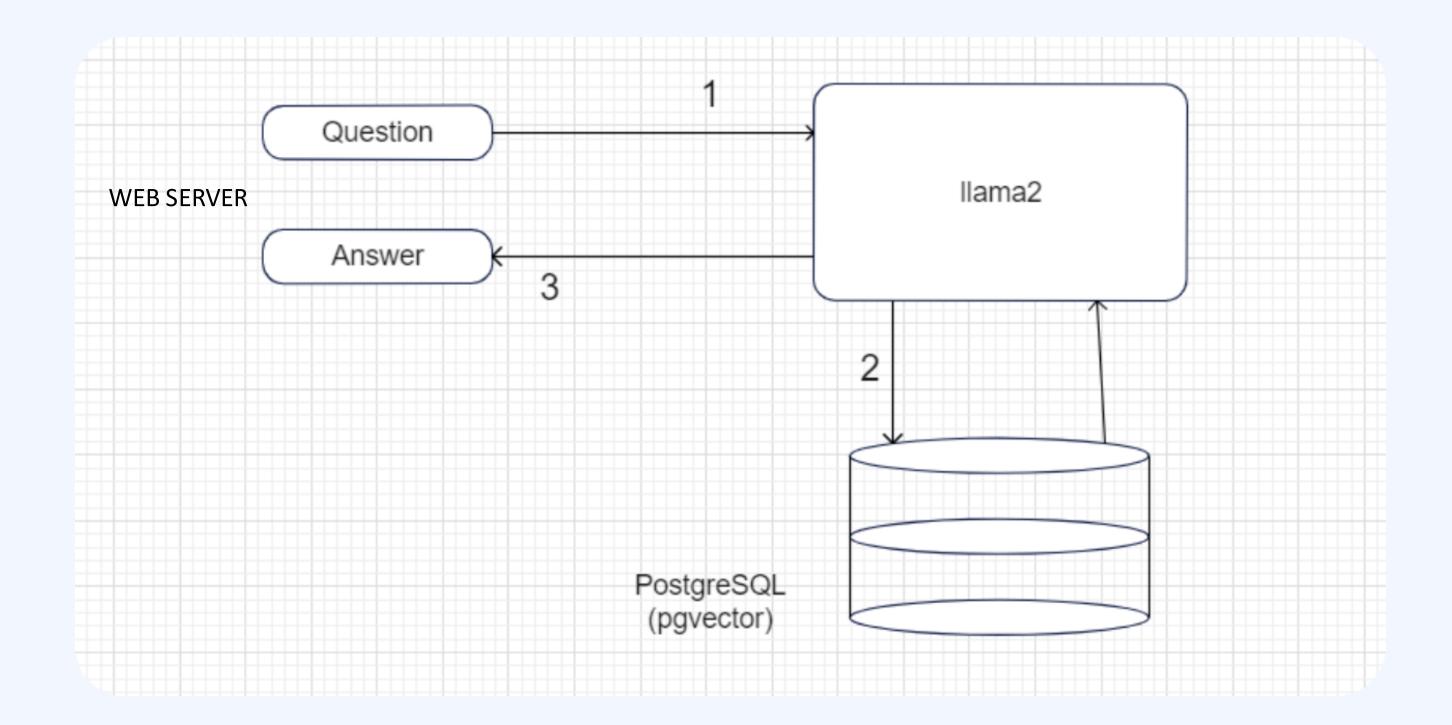
Feature

- Native vector support
- **Vector similarity search**
- **Indexing for ANN search**
- **Performance at scale**
- Hybrid filtering + similarity Integration with AI workflows
- In-database recommendation
- **Ease of deployment**
- Use in production (2025)

PostgreSQL + pgvector

- Yes (vector type)
- Yes (L2, Cosine, Inner Product)
- Yes (IVFFlat, HNSW)
- Sub-second for millions of rows
- Supported in single query
- Strong (LangChain, OpenAl, etc.)
- Yes (efficient + flexible)
- One stack, fewer moving parts
- Widely adopted (e.g. PostHog)
- MySQL X No (requires JSON/array hacks) X No native support \mathbf{X} No indexing for vectors X Full scan, poor at scale X Needs external logic X Limited, often external tools \times No (complex to implement) X Needs external vector DB or search engine
- X Rarely used for vector tasks

Use cases:



USE CASE DEMO:

Recommendation engine for e-commerce

-- Enable pgvector CREATE EXTENSION IF NOT EXISTS vector;

--- Create a table CREATE TABLE products (id SERIAL PRIMARY KEY, name TEXT, embedding VECTOR(512)

);

Code Snippet

```
seed_data.py
import psycopg2
from sentence transformers import SentenceTransformer
conn = psycopg2.connect(...)
cur = conn.cursor()
model = SentenceTransformer('all-MiniLM-L6-v2')
products = ["Dhaka Topi", "Gunyu Cholo", "Khukuri Knife",
"Thangka Painting", "Singing Bowl"]
for product in products:
  embedding = model.encode(product).tolist()
  cur.execute("INSERT INTO products (name, embedding)
VALUES (%s, %s)", (product, embedding))
conn.commit()
print("Data seeded successfully!")
```


Code Snippet

recommendation_engine.py

import psycopg2

from sentence_transformers import SentenceTransformer

model = SentenceTransformer('all-MiniLM-L6-v2')

conn = psycopg2.connect(...)

def get_recommendations(query_text, limit=5):

query_embedding = model.encode(query_text).tolist()

cur = conn.cursor()

cur.execute("SELECT name, embedding <=> %s AS distance FROM products ORDER BY distance ASC LIMIT %s",

(query_embedding, limit))

return cur.fetchall()

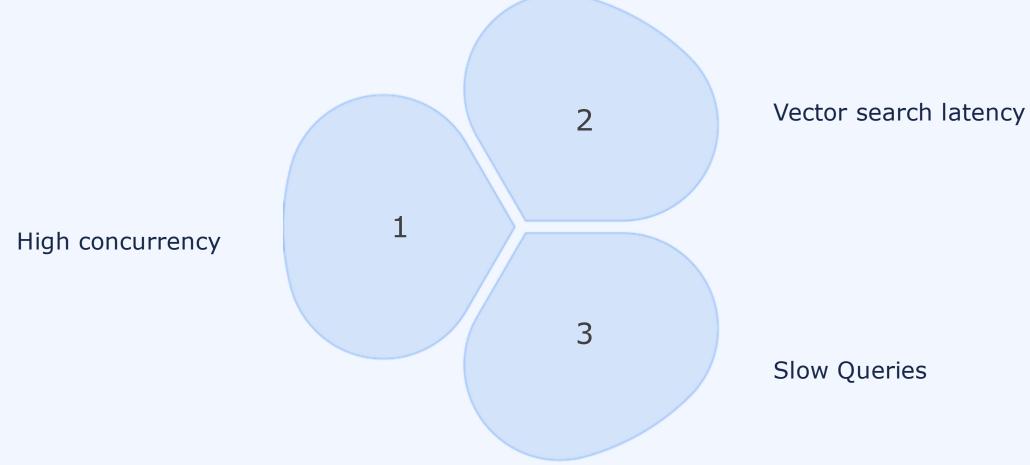
print(get_recommendations("Traditional Nepali dress"))

NOTE: Cosine similarity (Higher = more similar) SELECT name, 1 - (embedding <=> %s::vector) AS cosine_similarity FROM products ORDER BY cosine_similarity DESC LIMIT %s;

05

Scaling Challenges

Scaling Challenges: Bottlenecks



Solution: Partitioning & Sharding

Range/Time-based partitioning.

Hash partitioning

Demo Use case:

Splitting AI log data by timestamp partitioning:

CREATE EXTENSION IF NOT EXISTS vector;

```
CREATE TABLE ai_logs_non_partitioned (
id SERIAL,
log time TIMESTAMP NOT NULL,
request_data JSONB,
response data JSONB,
 embedding VECTOR(512)
);
```

CREATE TABLE ai logs partitioned (id SERIAL, log time TIMESTAMP NOT NULL, request data JSONB, response data JSONB, embedding VECTOR(512)) PARTITION BY RANGE (log time);

How It Works

- **1.Parent Table (ai_logs)**:
 - 1. Acts as a logical container for all partitions.
 - 2. Does not store any data directly.
 - 3. Routes rows to the appropriate partition based on the log_time column.

2.Partition Table (ai_logs_2024):

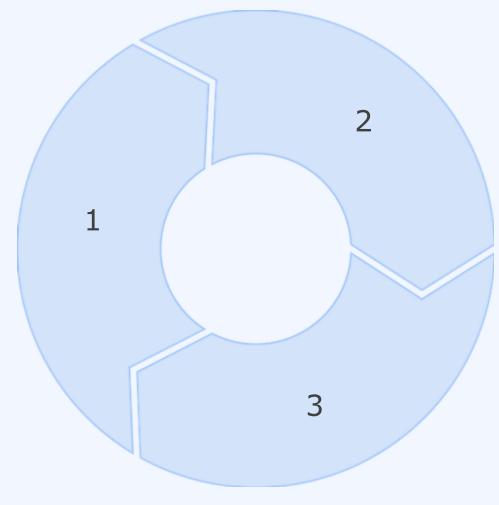
- 1. Stores rows where log_time is between 2024-01-01 and 2025-01-01.
- 2. Physically stores the data for this range.

06

Advantages of Partitioning

Advantages of Partitioning

Improved Query Performance: Queries only scan the relevant partitions, reducing the amount of data processed.



Easier Data Management: You can drop or archive old partitions without affecting the rest of the data.

Scalability: Partitioning helps manage large datasets by breaking them into smaller, more manageable pieces.

Illustration

Splitting AI log data by timestamp partitioning:

CREATE EXTENSION IF NOT EXISTS vector;

CREATE TABLE ai_logs_non_partitioned (id SERIAL, log_time TIMESTAMP NOT NULL, request_data JSONB, response_data JSONB, embedding VECTOR(512));

CREATE TABLE ai_logs_partitioned (id SERIAL, log_time TIMESTAMP NOT NULL, request_data JSONB, response_data JSONB, embedding VECTOR(512)) PARTITION BY RANGE (log_time);

an aran ana i nain tinan si an ana ina i nain tina tina si STREET PINET

Without Partition:

-- Insert 1M rows INSERT INTO ai_logs_non_partitioned (log_time, request_data, response_data, embedding)

SELECT

```
NOW() - (random() * INTERVAL '365 days'),
```

'{"input": "test"}'::jsonb,

'{"output": "test"}'::jsonb,

```
ARRAY(SELECT random() FROM generate_series(1, 512))::vector(512)
```

FROM generate_series(1, 1000000);

EXPLAIN ANALYZE SELECT * FROM ai_logs_non_partitioned WHERE log_time >= '2024-01-01' AND log_time < '2024-02-01';

	QUERY PLAN text	
1	Gather (cost=1000.0019734.25 rows=4000 width=108) (actual time=94.32698.688 rows=0 loops=1)	
2	Workers Planned: 2	
3	Workers Launched: 2	
4	-> Parallel Seq Scan on ai_logs_non_partitioned (cost=0.0018334.25 rows=1667 width=108) (actual time=50.97850.979 rows=0 lo	
5	Filter: ((log_time >= '2024-01-01 00:00:00'::timestamp without time zone) AND (log_time < '2024-02-01 00:00:00'::timestamp without	
6	Rows Removed by Filter: 333333	
7	Planning Time: 0.826 ms	
8	Execution Time: 98.707 ms	

After Partition:

-- Insert 1M rows INSERT INTO ai_logs_partitioned (log_time, request_data, response_data, embedding) SELECT NOW() - (random() * INTERVAL '365 days'), '{"input": "test"}'::jsonb, '{"output": "test"}'::jsonb, ARRAY(SELECT random() FROM generate_series(1, 512))::vector(512)

FROM generate_series(1, 1000000);

EXPLAIN ANALYZE SELECT * FROM ai_logs_partitioned WHERE log_time >= '2024-01-01' AND log_time < '2024-02-01';

	QUERY PLAN text
1	Result (cost=0.000.00 rows=0 width=0) (actual time=0.0010.001 rows=0 loops
2	One-Time Filter: false
3	Planning Time: 1.310 ms
4	Execution Time: 0.008 ms

When to Use Yearly Partitions

Small Datasets: If your dataset grows slowly (e.g., a few thousand rows per year), yearly partitions are sufficient. Queries Spanning a Year: If your queries often target an entire year's data, yearly partitions are a good fit.

When to Use Monthly Partitions

Large Datasets: If your dataset grows quickly (e.g., millions of rows per year), monthly partitions are better. Queries Targeting Specific Months: If your queries often target specific months, monthly partitions will improve performance.

07

Compare with Vector database

Comparing Traditional & Vector Databases

Feature

Storage backend

Similarity search

ANN indexing options

Query Filtering (metadata + vector)

Joins, transactions, ACID

Scalability

Ease of integration

Use case fit

pgvector (PostgreSQL extension)

PostgreSQL (relational + vector)

L2, Cosine, Inner Product

IVFFlat, HNSW (limited tuning)

Built-in (SQL WHERE + vector search)

Fully supported (relational DB) features)

- Good (scale-out via Citus, etc.)
- Simple if already using Postgres

Dedicated Vector DB (e.g., *Pinecone, Qdrant)*

Advanced similarity search, customizable

(more tuning options)

support it, but syntax differs

support

of vectors)

sync

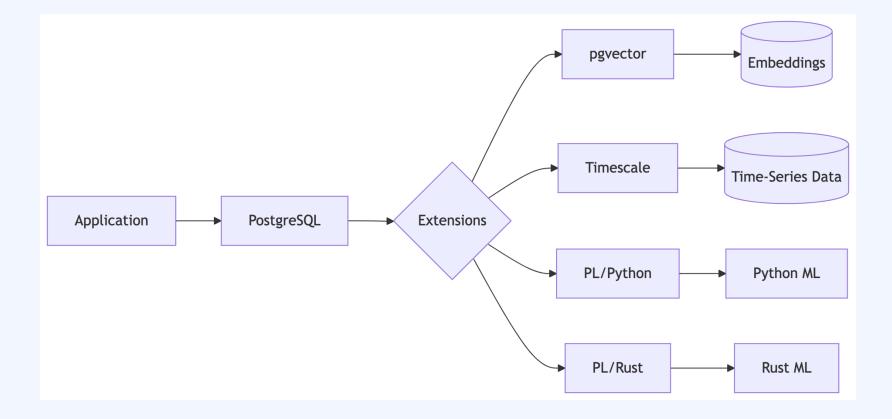
workloads

Purpose-built for vectors only

- HNSW, PQ, IVF, ScaNN, etc.
- **A** Varies; Qdrant/Weaviate
- X No joins, limited transactional
- Excellent (designed for billions)
- 🔼 Requires separate service and
 - Great for pure vector-heavy

Postgres as the AI Foundation

- •Embedding search
- •LLM metadata + feedback storage
- •Event log, feature store
- •With:
 - pgvector
 - timescale (time-series)
 - plpython / plrust for in-DB ML



Key Takeaways

- PostgreSQL is Al-ready
- pgvector simplifies similarity search
- Real-time, indexed search with one DB
- Easier, cheaper, scalable vs MySQL + external stack

08

Q&A

Thank You