
PostgreSQL in the AI Era

Speaker: Prabin Silwal

https://www.linkedin.com/in/prabin-silwal/

PostgreSQL Conference Nepal 2025 | 5–6 May, Kathmandu University

1

3

2

Why This Talk?

Rise of AI/ML in web applications (eg: E-commerce)

PostgreSQL's increasing role

Real-time, scalable, efficient data systems are needed

4 PostgreSQL is More Than Just a Relational DB: JSONB, Extensions

(pg_vector, fdw)

6. Advantages of Partitioning

2. What is pgvector extension

7. Compare with Vector database

4. Use case in AI

Focused Topics

3. Vector Search with pgvector

1. Introduction to vector search

8. Q & A

5. Scaling Challenges

1.Use of pgvector for AI

2.High-Performance Workloads in Postgres with partitioning

Overview of the Talk

Introduction to vector search

01

Cosine/Euclidean/Inner Product similarity

What is Vector Search?

Vectors in ML: embeddings
(NLP, image, recsys)

• method of finding similar items by comparing vector
representations of data instead of using traditional keyword

• commonly used in AI, machine learning, recommendations,
semantic search application, document search

Eg: "apple" might be encoded as [0.13, -1.23, 2.34, ...]

How Vector Search Works
1.Embed: Use a model (like OpenAI, Hugging Face, or CLIP) to convert
your data into vectors.

2.Store: Save these vectors in a vector-aware database (like PostgreSQL
with pgvector, Pinecone,Qdrant,..).

3.Query: Convert the user's query into a vector.

4.Compare: Use cosine similarity, Euclidean distance, or dot product
to find vectors that are closest to the query vector.

What is pgvector?

02

What is pgvector?

pgvector is a PostgreSQL extension

makes it possible to efficiently store, manipulate,
and analyze vector data

• Vector Storage

• Similarity Search

AI Integration

NLP: Text embeddings (e.g. OpenAI,

SentenceTransformers)

Computer Vision: Image embeddings

2

4 3

1

AI Integration:

 •NLP: Text embeddings (e.g.,

OpenAI, SentenceTransformers).

 •Computer Vision: Image

embeddings (CNNs).

Vector Storage: Native vector data

type for high-dimensional

embeddings (e.g., 384-dim).

pgvector is a PostgreSQL extension

that brings advanced capabilities

for handling high-dimensional

vector data.

Similarity Search: Supports cosine,

Euclidean, and inner product

distances.

Powers: Recommendation

systems, clustering, semantic

search, k-NN queries.

pgvector

Benefits of pgvector

This extension unlocks PostgreSQL’s

potential for applications such as

semantic and similarity search, image
retrieval, recommendation engines, NLP,

and computer vision tasks.

Vector Search with pgvector

03

pgvector: PostgreSQL as a vector database

• Storing embeddings and
• Similarity search

Vector Search with pgvector

Search Code Snippet:
Python + psycopg2 example

query_embedding = model.encode("Nepali traditional dress")
cursor.execute("SELECT name FROM products ORDER BY

 embedding <=> %s::vector LIMIT %s", (query_embedding, limit))

3

1

2

Approximation concerns

Not yet suited for billion-scale (but

great for mid-scale)

Memory usage

pgvector Limitations

04

Use case in AI:

Eg: Recommendation engine for e-commerce

def match_images(image_path, gallery_list):
 # Extract features from the query image
 query_features = extract_features(image_path)

 # Dictionary to store matching results
 highest_match_percentage = {}

 # Iterate over stored features and compare with the query features
 for image_feature in features_db.items():
 features = image_feature.features
 similarity = np.dot(query_features, features.T) / \
 (np.linalg.norm(query_features) * np.linalg.norm(features))
 match_percentage = similarity * 100
 if image_feature.product_id not in highest_match_percentage or \
 match_percentage >
highest_match_percentage[image_feature.product_id]:
 highest_match_percentage[image_feature.product_id] =
match_percentage

 # Sort the matched products based on the match percentage (highest to
lowest)
 matched_products = [MatchedFeature(product_id, match_percentage)
 for product_id, match_percentage in
highest_match_percentage.items()]
return matched_products

Alternative to above match_images Code :
Python + psycopg2 example

query_embedding = model.encode("Nepali traditional dress")
cursor.execute("SELECT name FROM products ORDER BY
 embedding <=> %s::vector LIMIT %s", (query_embedding, limit))

The Challenge with Traditional Approaches

Previous MySQL Setup:

•Separate systems for storage and search
•Complex ETL pipelines for vector operations
•Multiple tables/dbs for metadata and binary data
•External search engines for similarity matching

Pain Points:

•High operational complexity
•Performance bottlenecks

•No index support
•Expensive I/O

•Difficult to scale

Old MySQL Approach
Database → ETL Process → Vector DB → Search Engine

New PostgreSQL Approach
PostgreSQL with all capabilities]

The Challenge with Traditional Approaches

Previous MySQL Setup:

•Separate systems for storage and search
•Complex ETL pipelines for vector operations
•Multiple tables/dbs for metadata and binary data
•External search engines for similarity matching

Pain Points:

•High operational complexity
•Performance bottlenecks

•No index support
•Expensive I/O

•Difficult to scale

PostgreSQL to the Rescue

Why PostgreSQL for AI Workloads?

•Built-in vector support (pgvector extension)

•Store vector as native type

•Index support via ivfflat, hnsw
•JSON/JSONB for flexible schemas
•Full-text search capabilities
•Image/vector similarity search
•All in one database system
•Fast similarity search (<->, cosine, inner
product)

Feature PostgreSQL + pgvector MySQL
Native vector support Yes (vector type) No (requires JSON/array hacks)

Vector similarity search Yes (L2, Cosine, Inner Product) No native support

Indexing for ANN search Yes (IVFFlat, HNSW) No indexing for vectors

Performance at scale Sub-second for millions of rows Full scan, poor at scale

Hybrid filtering + similarity Supported in single query Needs external logic

Integration with AI workflows Strong (LangChain, OpenAI, etc.) Limited, often external tools

In-database recommendation Yes (efficient + flexible) No (complex to implement)

Ease of deployment One stack, fewer moving parts
 Needs external vector DB or

search engine

Use in production (2025) Widely adopted (e.g. PostHog) Rarely used for vector tasks

Use cases:

WEB SERVER

-- Enable pgvector
CREATE EXTENSION IF NOT EXISTS vector;

-- Create a table
CREATE TABLE products (

 id SERIAL PRIMARY KEY,
 name TEXT,
 embedding VECTOR(512)
);

USE CASE DEMO:

Recommendation engine for e-commerce

seed_data.py
import psycopg2
from sentence_transformers import SentenceTransformer
conn = psycopg2.connect(…)
cur = conn.cursor()
model = SentenceTransformer('all-MiniLM-L6-v2’)
products = ["Dhaka Topi", "Gunyu Cholo", "Khukuri Knife",
"Thangka Painting", "Singing Bowl"]
for product in products:
 embedding = model.encode(product).tolist()
 cur.execute("INSERT INTO products (name, embedding)
VALUES (%s, %s)", (product, embedding))
conn.commit()
print("Data seeded successfully!")

Code Snippet

recommendation_engine.py
import psycopg2
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2’)
conn = psycopg2.connect(…)
def get_recommendations(query_text, limit=5):
 query_embedding = model.encode(query_text).tolist()
 cur = conn.cursor()
 cur.execute("SELECT name, embedding <=> %s AS distance
FROM products ORDER BY distance ASC LIMIT %s",
(query_embedding, limit))
 return cur.fetchall()

print(get_recommendations("Traditional Nepali dress"))

Code Snippet

NOTE: Cosine similarity (Higher = more similar)
SELECT name, 1 - (embedding <=> %s::vector) AS cosine_similarity
FROM products ORDER BY cosine_similarity DESC LIMIT %s;

Scaling Challenges

05

2

3

1

Slow Queries

Vector search latency

High concurrency

Scaling Challenges:

Bottlenecks

Solution:

Partitioning & Sharding

Range/Time-based partitioning.

Hash partitioning

Demo Use case:

Splitting AI log data by timestamp

partitioning:

CREATE EXTENSION IF NOT EXISTS vector;

CREATE TABLE ai_logs_non_partitioned (

 id SERIAL,

 log_time TIMESTAMP NOT NULL,

 request_data JSONB,

 response_data JSONB,

 embedding VECTOR(512)

);

CREATE TABLE ai_logs_partitioned (

 id SERIAL,

 log_time TIMESTAMP NOT NULL,

 request_data JSONB,

 response_data JSONB,

 embedding VECTOR(512)

) PARTITION BY RANGE (log_time);

How It Works

1.Parent Table (ai_logs):

1. Acts as a logical container for all partitions.

2. Does not store any data directly.

3. Routes rows to the appropriate partition based on
the log_time column.

2.Partition Table (ai_logs_2024):

1. Stores rows where log_time is between 2024-01-
01 and 2025-01-01.

2. Physically stores the data for this range.

Advantages of Partitioning

06

3

2

1

Easier Data Management: You can

drop or archive old partitions

without affecting the rest of the

data.

Advantages of Partitioning

Improved Query Performance:

Queries only scan the relevant

partitions, reducing the

amount of data processed.
Scalability: Partitioning helps

manage large datasets by breaking

them into smaller, more

manageable pieces.

Illustration

Splitting AI log data by timestamp partitioning:

CREATE EXTENSION IF NOT EXISTS vector;

CREATE TABLE ai_logs_non_partitioned (

 id SERIAL,

 log_time TIMESTAMP NOT NULL,

 request_data JSONB,

 response_data JSONB,

 embedding VECTOR(512)

);

CREATE TABLE ai_logs_partitioned (

 id SERIAL,

 log_time TIMESTAMP NOT NULL,

 request_data JSONB,

 response_data JSONB,

 embedding VECTOR(512)

) PARTITION BY RANGE (log_time);

Without Partition:
-- Insert 1M rows
INSERT INTO ai_logs_non_partitioned (log_time, request_data, response_data, embedding)
SELECT
 NOW() - (random() * INTERVAL '365 days'),
 '{"input": "test"}'::jsonb,
 '{"output": "test"}'::jsonb,
 ARRAY(SELECT random() FROM generate_series(1, 512))::vector(512)
FROM generate_series(1, 1000000);

EXPLAIN ANALYZE
SELECT * FROM ai_logs_non_partitioned
WHERE log_time >= '2024-01-01' AND log_time < '2024-
02-01';

After Partition:
-- Insert 1M rows
INSERT INTO ai_logs_partitioned (log_time, request_data, response_data, embedding)
SELECT
 NOW() - (random() * INTERVAL '365 days'),
 '{"input": "test"}'::jsonb,
 '{"output": "test"}'::jsonb,
 ARRAY(SELECT random() FROM generate_series(1, 512))::vector(512)
FROM generate_series(1, 1000000);

EXPLAIN ANALYZE
SELECT * FROM ai_logs_partitioned
WHERE log_time >= '2024-01-01' AND log_time < '2024-02-01';

When to Use Yearly Partitions

Queries Spanning a Year: If

your queries often target an

entire year’s data, yearly

partitions are a good fit.

Small Datasets: If your

dataset grows slowly (e.g., a

few thousand rows per year),

yearly partitions are

sufficient.

When to Use Monthly Partitions

Queries Targeting Specific Months: If your queries

often target specific months, monthly partitions will

improve performance.

Large Datasets: If your dataset grows quickly (e.g.,

millions of rows per year), monthly partitions are

better.

07

Compare with Vector database

Comparing Traditional & Vector Databases

Feature pgvector (PostgreSQL extension)
Dedicated Vector DB (e.g.,
Pinecone, Qdrant)

Storage backend PostgreSQL (relational + vector) Purpose-built for vectors only

Similarity search L2, Cosine, Inner Product
 Advanced similarity search,

customizable

ANN indexing options IVFFlat, HNSW (limited tuning)
 HNSW, PQ, IVF, ScaNN, etc.

(more tuning options)

Query Filtering (metadata +
vector)

 Built-in (SQL WHERE + vector search)
 Varies; Qdrant/Weaviate

support it, but syntax differs

Joins, transactions, ACID
 Fully supported (relational DB

features)
 No joins, limited transactional

support

Scalability Good (scale-out via Citus, etc.)
 Excellent (designed for billions

of vectors)

Ease of integration Simple if already using Postgres
 Requires separate service and

sync

Use case fit Great for AI inside existing apps
 Great for pure vector-heavy

workloads

Postgres as the AI Foundation
•Embedding search
•LLM metadata + feedback storage
•Event log, feature store
•With:

• pgvector
• timescale (time-series)
• plpython / plrust for in-DB ML

Key Takeaways
 PostgreSQL is AI-ready
 pgvector simplifies similarity search
 Real-time, indexed search with one DB
 Easier, cheaper, scalable vs MySQL + external stack

Q & A

08

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

