
PostgreSQL Tools 
for Hunting Down and Fixing

Non-Optimal Queries

Ekaterina Sokolova (aka Cate)

Developer at Postgres Professional

Increasing DBMS performance

 provide high-quality services

 increase response speed to be competitive

 optimize processes to avoid problems when loads increase

 to strive to become better

2

A Beginner's Guide to Detectives

 searching for suspects

 interrogation of suspects: is it really suboptimal or not

 neutralize the culprits

3

SUSPECTS:
Non-optimal queries

1. Queries with long time of execution

5

1. Queries with long time of execution

 Let's save sql commands that take longer than a certain
amount of time to execute:

Add
log_min_duration_statement = <time_in_ms>

to postgresql.conf

5

1. Queries with long time of execution

 Let's save sql commands that take longer than a certain
amount of time to execute:

Add
log_min_duration_statement = <time_in_ms>

to postgresql.conf

Reload configuration:
SELECT pg_reload_conf();

OR
restart server: pg_ctl restart

5

postgres=# SELECT pg_sleep(5);

postgres=# SELECT pg_sleep(12);

postgres=# SELECT pg_backend_pid();

pg_backend_pid

 2263

(1 row)

postgres=# WITH RECURSIVE t(n) AS

(VALUES (1) UNION ALL SELECT n+1 FROM t

WHERE n < 100000000) SELECT sum(n) FROM t;

 sum

 5000000050000000

(1 row)

1. Queries with long time of execution

log_min_duration_statement = 10000

6

postgres=# SELECT pg_sleep(5);

postgres=# SELECT pg_sleep(12);

postgres=# SELECT pg_backend_pid();

pg_backend_pid

 2263

(1 row)

postgres=# WITH RECURSIVE t(n) AS

(VALUES (1) UNION ALL SELECT n+1 FROM t

WHERE n < 100000000) SELECT sum(n) FROM t;

 sum

 5000000050000000

(1 row)

log_min_duration_statement = 10000

[2263] LOG: duration: 12007.490 ms
rows: 1 size: 6 bytes statement: 
SELECT pg_sleep(12);

[2263] LOG: duration: 155509.569 ms
rows: 1 size: 22 bytes statement: 
WITH RECURSIVE t(n) AS

(VALUES (1)UNION ALL 
SELECT n+1 FROM t 
WHERE n < 100000000)

SELECT sum(n) FROM t;

logfile

1. Queries with long time of execution

6

Not every long-running operation is bad
and not every suboptimal action is long.

Module pg_stat_statements — tracking
execution statistics of all SQL statements
executed by a server.

Spying on statements

1. Add to postgresql.conf
shared_preload_libraries = 'pg_stat_statements'

2. Into psql
 

CREATE EXTENSION pg_stat_statements;

pg_stat_statements

8

Spying on statements pg_stat_statements

SELECT * FROM tab_A CROSS JOIN tab_B LIMIT 6;

SELECT * FROM tab_B CROSS JOIN tab_A LIMIT 6;

SELECT * FROM tab_B CROSS JOIN tab_A LIMIT 200;

 SELECT * FROM tab_A
 CROSS JOIN tab_B LIMIT $1; 1

 SELECT * FROM tab_B
 CROSS JOIN tab_A LIMIT $1; 2

query calls

query, -- text of query

calls, -- number of times executed

9

Spying on statements pg_stat_statements

query, -- text of query

calls, -- number of times executed

total_exec_time, -- total time spent in the statement

min_exec_time,

max_exec_time,

mean_exec_time,

stddev_exec_time, -- population standard deviation of time spent

rows -- total number of rows retrieved or affected

10

Spying on statements pg_stat_statements

query, -- text of query

calls, -- number of times executed

total_exec_time, -- total time spent in the statement

min_exec_time,

max_exec_time,

mean_exec_time,

stddev_exec_time, -- population standard deviation of time spent

rows -- total number of rows retrieved or affected

2. «Suspicious» queries

10

Spying on statements pg_stat_statements

query, -- text of query

calls, -- number of times executed

total_exec_time, -- total time spent in the statement

min_exec_time,

max_exec_time,

mean_exec_time,

stddev_exec_time, -- population standard deviation of time spent

rows -- total number of rows retrieved or affected

11

SELECT query, calls,

total_exec_time, min_exec_time,

max_exec_time, mean_exec_time,

stddev_exec_time, rows

FROM pg_stat_statements

ORDER BY _exec_time DESC;

max 
mean

12

SELECT query, calls,

total_exec_time, min_exec_time,

max_exec_time, mean_exec_time,

stddev_exec_time, rows

FROM pg_stat_statements

ORDER BY _exec_time DESC;

max 
mean

total_exec_time

13

3. Frequent queries

SELECT query, calls,

total_exec_time, min_exec_time,

max_exec_time, mean_exec_time,

stddev_exec_time, rows

FROM pg_stat_statements

ORDER BY _exec_time DESC;

max 
mean

total_exec_time

 query SELECT $1
 calls 04293
 total_exec_time 20.360238999999982
 min_exec_time 0.002057
 max_exec_time 0.19523300000000002
 mean_exec_time 0.004742659911483821
 stddev_exec_time 0.008009316879670965
 rows 04293

SELECT 1; 13

< 0,1 s
SELECT query, calls,

total_exec_time, min_exec_time,

max_exec_time, mean_exec_time,

stddev_exec_time, rows,

(100 * total_exec_time / sum(total_exec_time)

OVER ()) AS cpu_perc

FROM pg_stat_statements

ORDER BY cpu_perc DESC;

3. Frequent queries

14

A Beginner's Guide to Detectives

 searching for suspects

 interrogation of suspects: is it really suboptimal or not 

 and what we can do

 neutralize the culprits

15

Get rid of non-optimality

INSIDE

OUTSIDE

Ability to manage queries

 change work routine

Unable to manage queries

 set up infrastructure

16

Checklist of questions

 Do we really need this query?

17

Checklist of questions

 Do we really need this query?

 Get rid of unnecessary queries

 Create MATERIALIZED VIEWs 
 for a frequently repeated query on 
 a rarely changing data set

17

Checklist of questions

 Do we really need this query?

 Do we need it at a particular time?

18

Checklist of questions

 Do we really need this query?

 Do we need it at a particular time?

 Can it be postponed until a period 
 of lower server load?

 Can it be scheduled to run after more 
 urgent queries on the same data 
 to avoid blocking?

18

Checklist of questions

 Do we really need this query?

 Do we need it at a particular time?

 Was there anything blocking it?

19

Checklist of questions

 Do we really need this query?

 Do we need it at a particular time?

 Was there anything blocking it?

 Is there type match everywhere?
 Java type -> SQL type
 Variable type 🤝 operator
 Index for x, but select x^2

20

Checklist of questions

 Do we really need this query?

 Do we need it at a particular time?

 Was there anything blocking it?

 Is there type match everywhere?

 Are there extra indexes? Or lack of indexes?
 remove unused indexes 
 (pg_stat_user_indexes & pg_index)
 Use The Index, Luke (website)
 hypothetical indexes (hypopg)

21

Indexes in PostgreSQL

Type of index Performance When to use

B-tree (default) O(log(n)) Can be used for both equality and range queries

Hash O(1) Only works for equality comparisons

GiST 
(Generalized Search Tree)

O(log(n)) Can be used with geometric data types 
for equality and range comparisons

SP-GiST 
(Space-partitioned DiST)

O(log(n)) For insertion and queries Non-balanced, 
disk-based data structures

GIN 
(Generalized Inverted Indexes)

O(log(n)) Indexing data types that map multiple values to
one row (i.e. arrays and full text search)

RUM O(log(n)) Like GIN but it allows additional information 
to be stored in the index

BRIN 
(Block Range Index)

20x faster
than B-tree

99%+ space savings. Table entries have to be
ordered in the same format as the data on disk

Bloom O(n) Sufficiently "wide" tables, queries can use
filtering by any of the fields, with false positives

22

Checklist of questions

 Do we really need this query?

 Do we need it at a particular time?

 Was there anything blocking it?

 Is there type match everywhere?

 Are there extra indexes? Or lack of indexes?
 remove unused indexes 
 (pg_stat_user_indexes & pg_index)
 Use The Index, Luke (website)
 hypothetical indexes (hypopg)

23

Checklist of questions

 Do we really need this query?

 Do we need it at a particular time?

 Was there anything blocking it?

 Is there type match everywhere?

 Are there extra indexes? Or lack of indexes?

 Was it executed optimally?

 Was there a logical error in the query?

24

Sort

Hash Join

Seq Scan Hash

EXPLAIN

cost, rows, width

25

Sort

Hash Join

Seq Scan Hash

cost, rows, width

EXPLAIN

planned

+

real

times, rows, loops

ANALYZE

26

auto_explain

 Module provides a means for logging 
 execution plans of slow statements automatically

 auto_explain.log_min_duration (integer)

 auto_explain.log_analyze (boolean)

27

 SELECT max(income.value - expense.value)
FROM income FULL JOIN expense ON income.value = expense.value
WHERE expense.value < income.value;

 Aggregate (cost=67362.98..67362.99 rows=1 width=4)
 -> Hash Join (cost=15417.00..63304.62 rows=811670 width=8)
 Hash Cond: (income.value = expense.value)
 Join Filter: (expense.value < income.value)
 -> Seq Scan on income (cost=0.00..7213.00 rows=500000 width=4)
 -> Hash (cost=7213.00..7213.00 rows=500000 width=4)
 -> Seq Scan on expense (cost=0.00..7213.00 rows=500000 width=4)

EXPLAIN

28

ANALYZE SELECT max(income.value - expense.value)
FROM income FULL JOIN expense ON income.value = expense.value
WHERE expense.value < income.value;

EXPLAIN

Planning Time: 0.137 ms
Execution Time: 2033.951 ms

Aggregate 
cost=67362.98..67362.99

Hash Join 
cost=15417.00..63304.62

Seq Scan 
on income 

cost=0.00..7213.00 
rows=500000

Hash 
cost=7213.00..7213.00

Seq Scan 
on expense 

cost=0.00..7213.00 
rows=500000

29

Time of 
execution

Nested 
Loop

Nested 
Loop

How was the plan chosen?

Number 
of rows

30

Time of 
execution

Nested 
Loop

Nested 
Loop

How was the plan chosen?

Number 
of rows

Merge 
Join

Merge 
Join

30

Time of 
execution

Nested 
Loop

Nested 
Loop

How was the plan chosen?

Number 
of rows

Merge 
Join

Merge 
Join

Hash 
Join

Hash 
Join

30

Time of 
execution

Nested 
Loop

Nested 
Loop

How was the plan chosen?

Merge 
Join

Merge 
Join

Hash 
Join

Hash 
Join

N1 N2 Number 
of rows

30

Time of 
execution

Nested 
Loop

Hash 
Join

N1 N2 Number 
of rows

Nested 
Loop

Merge 
Join

Hash 
Join

Merge 
Join

How was the plan chosen?

31

Time of 
execution

Nested 
Loop

Hash 
Join

N1 N2 Number 
of rows

Nested 
Loop

O(N2) 
May decrease to O(N).

Hash 
Join

O(N) 
Can reach O(N2).

Merge 
Join O(N*log(N))

Nested 
Loop

Merge 
Join

Hash 
Join

Merge 
Join

How was the plan chosen?

31

Time of 
execution

Expectation

Number 
of rows

N

32

Time of 
execution

Reality

N

Number 
of rows

33

ANALYZE SELECT max(income.value - expense.value)
FROM income FULL JOIN expense ON income.value = expense.value
WHERE expense.value < income.value;

EXPLAIN

Planning Time: 0.137 ms
Execution Time: 2033.951 ms

Aggregate 
cost=67362.98..67362.99

Hash Join 
cost=15417.00..63304.62

Seq Scan 
on income 

cost=0.00..7213.00 
rows=500000

Hash 
cost=7213.00..7213.00

Seq Scan 
on expense 

cost=0.00..7213.00 
rows=500000

34

ANALYZE SELECT max(income.value - expense.value)
FROM income FULL JOIN expense ON income.value = expense.value
WHERE expense.value < income.value;

EXPLAIN

Aggregate 
cost=67362.98..67362.99

Hash Join 
cost=15417.00..63304.62

Seq Scan 
on income 

cost=0.00..7213.00 
rows=500000

Hash 
cost=7213.00..7213.00

Seq Scan 
on expense 

cost=0.00..7213.00 
rows=500000

SET enable_seqscan TO OFF;

cost += 10.000.000.000

Planning Time: 0.137 ms
Execution Time: 2033.951 ms

34

ANALYZE SELECT max(income.value - expense.value)
FROM income FULL JOIN expense ON income.value = expense.value
WHERE expense.value < income.value;

EXPLAIN

Planning Time: 0.137 ms 0.192 ms
Execution Time: 2033.951 ms 784.764 ms

Aggregate 
cost=67362.98..67362.99

Merge Join

Seq Scan 
on income 

cost=0.00..7213.00 
rows=500000

Bitmap Heap Scan 
on expense

Index Only Scan 
on index_ex 

cost=0.00..20951.82 
rows=500000

SET enable_seqscan TO OFF;

cost += 10.000.000.000

Index Only Scan 
on index_in 

cost=0.00..10362.42 
rows=500000

35

ANALYZE SELECT max(income.value - expense.value)
FROM income FULL JOIN expense ON income.value = expense.value
WHERE expense.value < income.value;

EXPLAIN

SET enable_seqscan TO OFF;

cost += 10.000.000.000

Let's find out who
ruined the performance

36

Join Join

Hash 
Join

pg_hint_plan

 Module allows a user to control an execution plan.
 It use hinting phrases mentioned in comments of a special 
 form inside the SQL-query.

37

pgpro_multiplan Module allows the user to save query execution plans, 
 thereby avoiding repeated optimization of identical queries.

38

pgpro_multiplan Module allows the user to save query execution plans, 
 thereby avoiding repeated optimization of identical queries.

aqo Postgres Pro Enterprise extension for cost-based query optimization. 
 Using machine learning methods, aqo improves cardinality estimation, 
 which can optimize execution plans and, consequently, speed up query 
 execution.

aqe Adaptive query execution enables reoptimizing a query, if during the 
 execution some trigger indicates that it is non-optimal, so a more 
 optimal plan should be looked for.

38

pgpro_multiplan Module allows the user to save query execution plans, 
 thereby avoiding repeated optimization of identical queries.

aqo Postgres Pro Enterprise extension for cost-based query optimization. 
 Using machine learning methods, aqo improves cardinality estimation, 
 which can optimize execution plans and, consequently, speed up query 
 execution.

aqe Adaptive query execution enables reoptimizing a query, if during the 
 execution some trigger indicates that it is non-optimal, so a more 
 optimal plan should be looked for.

Alena Rybakina: Adaptive query optimization in PostgreSQL

38

A Beginner's Guide to Detectives

 searching for suspects

 interrogation of suspects: is it really suboptimal or not

 neutralize the culprits

39

PanicNext part of
presentation

40

 Is something running?

 Is something blocked?

 What is the progress 
 of statement execution?

41

Is something running?

pg_stat_activity

SELECT pid, backend_type, state, 

 query, wait_event_type, 

 wait_event 
FROM pg_stat_activity;

 pid 
 backend_type 
 state 
 query 
 wait_event_type 
 wait_event

 3539 
 autovacuum launcher 
 
 
 Activity 
 AutoVacuumMain

 pid 
 backend_type 
 state 
 query 
 
 
 
 wait_event_type 
 wait_event

03599 
 client backend 
 active 
 select pid, backend_type, state, 
 query, wait_event_type, 
 wait_event 
 from pg_stat_activity;

42

 Is something running?

 Is something blocked?

 What is the progress 
 of statement execution?

43

Is something blocked?

1

2

 Tools built into the IDE

 Special programs

44

Is something blocked?

1

2

 Tools built into the IDE

 Special programs

3 Well-written SQL-query SELECT * FROM pg_locks 
 LEFT JOIN pg_stat_activity 
 ON pg_locks.pid = pg_stat_activity.pid;

44

Is something blocked?

1

2

 Tools built into the IDE

 Special programs

3 Well-written SQL-query SELECT * FROM pg_locks 
 LEFT JOIN pg_stat_activity 
 ON pg_locks.pid = pg_stat_activity.pid;

NOT

44

 pg_locks monitoring

SELECT blocked_locks.pid AS blocked_pid,
 blocked_activity.usename AS blocked_user,
 blocking_locks.pid AS blocking_pid,
 blocking_activity.usename AS blocking_user,
 blocked_activity.query AS blocked_statement,
 blocking_activity.query AS current_statement_in_blocking_process
 FROM pg_catalog.pg_locks blocked_locks
 JOIN pg_catalog.pg_stat_activity blocked_activity 
 ON blocked_activity.pid = blocked_locks.pid
 JOIN pg_catalog.pg_locks blocking_locks
 ON blocking_locks.locktype = blocked_locks.locktype
 AND blocking_locks.DATABASE IS NOT DISTINCT FROM blocked_locks.DATABASE
 AND blocking_locks.relation IS NOT DISTINCT FROM blocked_locks.relation
 AND blocking_locks.page IS NOT DISTINCT FROM blocked_locks.page
 AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_locks.tuple
 AND blocking_locks.virtualxid IS NOT DISTINCT FROM blocked_locks.virtualxid
 AND blocking_locks.transactionid IS NOT DISTINCT FROM blocked_locks.transactionid
 AND blocking_locks.classid IS NOT DISTINCT FROM blocked_locks.classid
 AND blocking_locks.objid IS NOT DISTINCT FROM blocked_locks.objid
 AND blocking_locks.objsubid IS NOT DISTINCT FROM blocked_locks.objsubid
 AND blocking_locks.pid != blocked_locks.pid
 JOIN pg_catalog.pg_stat_activity blocking_activity ON blocking_activity.pid = blocking_locks.pid
 WHERE NOT blocked_locks.GRANTED;

blocked 
pid

blocked 
user

blocking 
pid

blocking 
user

blocked 
statement

current statement in
blocking process

45

 Is something running?

 Is something blocked?

 What is the progress 
 of statement execution?

46

How is the system command doing?

 ANALYZE

 CREATE INDEX

 VACUUM

 CLUSTER

 Base Backup

 COPY

 — Pid and command text
 — Ratio
 — Phase
 — Number of blocks/rows/bytes 
 already processed

pg_stat_progress_*

47

How is the system command doing?

pg_stat_progress_*

select * from pg_stat_progress_vacuum;

 pid

 datid

 datname

 relid

 phase

 heap_blks_total

 heap_blks_scanned

 heap_blks_vacuumed

 index_vacuum_count

 max_dead_tuples

 num_dead_tuples

 5190

 13263

 postgres

 16384

 vacuuming indexes

 12620

 12620

 0

 0

 3672420

 1499548

 5190

 13263

 postgres

 16387

 vacuuming indexes

 6638

 6638

 0

 0

 1931658

 1500000

48

How is the user query doing?

query is long-running

… or wrongly written

 WITH RECURSIVE t(n) AS 
 (VALUES (1)UNION ALL 
 SELECT n+1 FROM t 
 WHERE n < 100000000) 
 SELECT sum(n) FROM t;

 SELECT my_table.* 
 FROM some_table,  
 some_table AS my_table 
 GROUP BY my_table.c1;

49

How is the user query doing?

AFTERBEFORE QUERY EXECUTION

Didn't do an EXPLAIN before
running the statement, but 
doubted its correctness

We are interested when 
the query will be completed /
whether it’s frozen

EXPLAIN EXPLAIN 
ANALYZE

50

How is the user query doing?

pg_query_state runtime EXPLAIN ANALYZE

patch to PostgreSQL core is required

AFTERBEFORE QUERY EXECUTION

EXPLAIN EXPLAIN 
ANALYZE

50

Didn't do an EXPLAIN before
running the statement, but 
doubted its correctness

We are interested when 
the query will be completed /
whether it’s frozen

How is the user query doing?

pg_query_state runtime EXPLAIN ANALYZE

AFTERBEFORE QUERY EXECUTION

EXPLAIN EXPLAIN 
ANALYZE

1

10

10

0

5

26

1

11

26

51

How is the user query doing?

pg_query_state runtime EXPLAIN ANALYZE

AFTERBEFORE QUERY EXECUTION

SELECT * FROM pg_query_state(4925);

pid frame 
number query_text plan leader 

pid

4925 0
 insert into tab_a select 
 generate_series(1,100000);

 Insert on tab_a (Current loop: actual rows=0, loop number=1) 
 -> ProjectSet (Current loop: actual rows=35708, loop number=1)
 -> Result (Current loop: actual rows=1, loop number=1)

54

How is the user query doing?

pg_query_state runtime EXPLAIN ANALYZE

 # SELECT pg_backend_pid();

 # run the query
 # SELECT * FROM 
 pg_query_state(4925);

Function argument: pid of the server process

4925

52

How is the user query doing?

pg_query_state runtime EXPLAIN ANALYZE

 # INSERT INTO tab_a SELECT 
 generate_series(1,10000000);

 # SELECT pid FROM pg_stat_activity 
 WHERE query LIKE 
 'insert into tab_a%';

 # SELECT * FROM 
 pg_query_state(4925);

Function argument: pid of the server process

4925

53

SELECT n_join_foo_bar();

pid frame 
number query_text plan leader 

pid

4925 0 SELECT 
 n_join_foo_bar

 Result 
 (Current loop: actual rows=0, loop number=1) (null)

4925 1

 SELECT
 (SELECT count(*)
 FROM foo
 JOIN bar ON
 foo.c1=bar.c1)

 Result (Current loop: actual rows=0, loop number=1) 
 InitPlan 1 (returns $0) 
 -> Aggregate (Current loop: actual rows=0, loop number=1)
 -> Nested Loop (Current loop: actual rows=51, loop number=1) 
 Join Filter: (foo.c1 = bar.c1) 
 Rows Removed by Join Filter: 51636304 
 -> Seq Scan on bar 
 (Current loop: actual rows=52, loop number=1) 
 -> Materialize (actual rows=1000000 loops=51)
 (Current loop: actual rows=636355, loop number=52) 
 -> Seq Scan on foo 
 (Current loop: actual rows=1000000, loop number=1)

(null)

55

pid query_text plan leader 
pid

4925

 SELECT count(*)
 FROM foo
 JOIN bar ON
 foo.c1=bar.c1

 Finalize Aggregate (Current loop: actual rows=0, loop number=1) 
 -> Gather (Current loop: actual rows=0, loop number=1)
 Workers Planned: 2 
 Workers Launched: 2
 -> Partial Aggregate (Current loop: actual rows=0, loop number=1) 
 . . .

(null)

4932 <parallel query>

 Partial Aggregate (Current loop: actual rows=0, loop number=1)
 -> Nested Loop (Current loop: actual rows=10, loop number=1)
 Join Filter: (foo.c1 = bar.c1)
 Rows Removed by Join Filter: 4896779
 -> Parallel Seq Scan on foo (Current loop: actual rows=10, loop number=1)
 -> Seq Scan on bar (actual rows=500000 loops=9)
 (Current loop: actual rows=396789, loop number=10)

4925

4933 <parallel query> . . . 4925

SET max_parallel_workers_per_gather = 2;

SELECT count(*) FROM foo JOIN bar ON foo.c1 = bar.c1;

56

What is the progress of statement execution?

pg_query_state runtime EXPLAIN ANALYZE

SELECT * FROM pg_progress_bar_visual(4925, 5);

Progress = 0.043510
Progress = 0.168168
Progress = 0.292632
Progress = 0.407450
Progress = 0.530559
Progress = 0.645778
Progress = 0.735760
Progress = 0.871077
Progress = 0.995097
Progress = 1.000000

 # SELECT * FROM 
 pg_progress_bar(4925);

 progress_bar

 0.6087927
 (1 row)

57

 Is something running?

 Is something blocked?

 What is the progress 
 of statement execution?

58

Results of the  
investigation

 Find the suspects: candidate queries for improvement

 Clear the crime scene: 
 get rid of redundant requests, move non-urgent ones

Results of the investigation

60

 Find the suspects: candidate queries for improvement

 Clear the crime scene: 
 get rid of redundant requests, move non-urgent ones

 Interrogation: look at plans of heavy queries

 Check the conformity of types, create/delete indexes, 
 configure parameters

Results of the investigation

60

 Find the suspects: candidate queries for improvement

 Clear the crime scene: 
 get rid of redundant requests, move non-urgent ones

 Interrogation: look at plans of heavy queries

 Check the conformity of types, create/delete indexes, 
 configure parameters

 Take off the handcuffs: checking blockages

 Examination: how far the query has been completed

 Verdict: continue execution or cancel

Results of the investigation

60

Thank you 
for your attention

Ekaterina Sokolova (aka Cate)
e.sokolova@postgrespro.ru

