
Extensions in PostgreSQL,
and how to develop one

- By, Swastik Gurung

Speaker’s Bio

● Name: Swastik Gurung

● Designation: Data Operations Manager @ Bajra Technologies Pvt. Ltd.

● Skills: SQL, PostgreSQL, MySQL, Linux, Python

● Hobbies: Traveling, Hiking, Nature photography, Cooking

● Linkedin: linkedin.com/in/swastik-gurung-449ab2136/

GitHub: github.com/swastik1990

https://bajratechnologies.com/
http://linkedin.com/in/swastik-gurung-449ab2136/
http://github.com/swastik1990

Introduction

● Non-core code that can be installed into a database

● Add new functions or features

● Modular approach to new features

● Popular Examples (e.g., pg_stat_statements, PostGIS, pgcrypto)

Useful Things to Know

● Some extensions are "trusted" and can be created by non-superusers

● Install Extensions objects into a specified schema

● Extension can be updated to a newer version

● Some extensions depend on others

When to Use Extensions

● Add specialized functionality (like geospatial features or time-series optimization)

● Enhance performance with specialized index types

● Add new data types or operators

● Extend PostgreSQL procedural languages

Why use extensions

● Better way to bundle together multiple related functions or features

● Easier to install (CREATE EXTENSION), configure and manage extensions

● Modular architecture

● Community or Third-party involvement

● Reusable Code

Understanding PostgreSQL Extensions

● Built-in (shipped with PostgreSQL) which are Trusted

● Third-Party (developed externally) Extensions, usually Untrusted

● Where to find extensions: contrib modules, PGXN, GitHub, OS package managers

● Extensions are installed per-database, not server-level

● Use cases: performance monitoring (pg_stat_statements), GIS support (PostGIS), encryption (pgcrypto)

Installing and Managing Extensions

● Extensions can be installed via CREATE EXTENSION <name>;

● List installed extensions: \dx or SELECT * FROM pg_extension; in psql

● To display available extensions: SELECT * FROM pg_available_extensions ORDER BY name;

● To Update an extension: ALTER EXTENSION ... UPDATE;

● To Remove an extension: DROP EXTENSION

Extension Directory Structure

● SQL Files (extension--version.sql)

● Control File (extension.control)

● Makefile (compiling with C)

● Shared Libraries and C Code (if applicable)

my_extension/
├── my_extension.control
├── my_extension--1.0.sql
├── Makefile
└── src/
 └── my_extension.c

Developing a Basic Extension

● Either copy to local extension directory or use make install

● Writing the Control File

● Creating SQL Scripts for Functions, Types, or Tables

● Registering Objects with PostgreSQL

● Write in C to gain performance (low-level language)

● Create a GitHub Repo for Community (optional)

Writing Extensions in C

● Use C for performance boost, access to postgres internals

● PostgreSQL Server Programming Interface (SPI) for DB interactions

● Creating Shared Libraries

● Compiling with pg_config and Makefile

Versioning and Upgrades

● Naming Convention for Version Scripts. Ex: extension--1.0--1.1.sql

● Use ALTER EXTENSION UPDATE to upgrade smoothly

● Consider ALTERs over DROPs to preserve user data

● Think of backward compatibility, migration scripts

Testing and Debugging Extensions

● Unit Testing with pgTAP

● Enable Logging and Error Handling, with log_min_messages

● Common Debugging Techniques

Packaging and Distribution

● Add README, LICENSE, Makefile, and metadata files

● Distribute via GitHub or PGXN (PostgreSQL Extension Network)

● Consider making it installable via apt, yum, or Homebrew

Security Considerations

● Dealing with Privileges (Schema, Table, Function)

● Try to avoid Superuser Privileges

● Use Trusted Sources for Extensions (contrib, PGXN, reputed GitHub Repos)

● Separate/Dedicated schema for extensions

● Avoid dynamic SQL injections and unsafe file operations

PostgreSQL Extensions (PostGIS)

● Spatial database extender for PostgreSQL

● Allows location queries to be run in SQL

● Supports geometric and geographic types: POINT, LINESTRING, POLYGON, MULTIPOLYGON, etc.

● Hundreds of spatial functions: ST_Contains, ST_Intersects, ST_Distance, ST_Within, etc.

● Completely free and open source under the GNU GPL license

● Use Cases: Storing and querying spatial data (e.g., maps, regions, roads), Finding nearby places, route calculations

PostgreSQL Extensions (postgres_fdw)

● Allows querying remote PostgreSQL servers from a local

● Remote tables usable in SQL queries

● Supports SELECT, INSERT, UPDATE, and DELETE on foreign tables

● Uses PostgreSQL backend connections

● Use Cases: Federated queries, without ETL

PostgreSQL Extensions (pg_stat_statements)

● Tool for query performance monitoring

● Detailed Metrics Collected: Total calls, Total time spent, Min/Max/Mean execution time, Rows returned, Shared/local

block I/O, Temp file usage

● Useful for DBAs to optimize queries, indexes, and app performance

● Works well with tools like pgBadger, pg_stat_monitor, Grafana, etc.

● Use Cases: Identify slow queries, most frequently executed queries

PostgreSQL Extensions (pg_trgm)

● Extension for fuzzy string matching and text search

● Breaks strings into trigrams (three-character chunks) for similarity comparisons

● Enables fuzzy search using %, LIKE, and ILIKE with index support

● Similarity Functions: similarity(text, text), word_similarity(text, text), show_trgm(text)

● Can be combined with PostgreSQL's full-text search for advanced use cases

● Use Cases: Fuzzy search, Deduplication

PostgreSQL Extensions (pgvector)

● Vector storage in native PostgreSQL format

● Indexing support for fast similarity search

● Supports cosine, inner product, and L2 distance

● Seamless integration with AI models and pipelines

● Use Cases: Semantic search, Recommendation systems, AI/ML applications

PostgreSQL Extensions (pgcrypto)

● Cryptographic functions for data encryption, decryption, hashing, and digital signatures

● Works inside SQL, so we can encrypt/decrypt data in queries

● Storing encrypted sensitive data (like SSNs, emails, etc.)

● Use Cases: Data Encryption, Password hashing

Conclusion

● Extensions unlock PostgreSQL’s true power

● Start small—build SQL-only extensions, move to C if needed

● Contribute to the community: share your work!

Hands On Exercises

References

PostgreSQL Documentation | CREATE EXTENSION Link

10 PostgreSQL extensions you need to know about | PostgreSQL 101 Link

Software Catalogue - PostgreSQL extensions Link

Top 8 PostgreSQL Extensions Link

https://www.postgresql.org/docs/current/sql-createextension.html
https://www.youtube.com/watch?v=FLSLlG1lN5w
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.timescale.com/blog/top-8-postgresql-extensions

