Extensions in PostgreSQL,
and how to develop one

- By, Swastik Gurung

Speaker’'s Bio

° Name: Swastik Gurung

e Designation: Data Operations Manager @ Bajra Technologies Pvt. Ltd.
° Skills: SQL, PostgreSQL, MySQL, Linux, Python

e Hobbies: Traveling, Hiking, Nature photography, Cooking

e Linkedin: linkedin.com/in/swastik-gurung-449ab2136/

GitHub: github.com/swastik1990

https://bajratechnologies.com/
http://linkedin.com/in/swastik-gurung-449ab2136/
http://github.com/swastik1990

Introduction

° Non-core code that can be installed into a database
° Add new functions or features
e Modular approach to new features

e Popular Examples (e.g., pg_stat_statements, PostGIS, pgcrypto)

Useful Things to Know

e Some extensions are "trusted" and can be created by non-superusers

Install Extensions objects into a specified schema
e Extension can be updated to a newer version

e Some extensions depend on others

When to Use Extensions

Add specialized functionality (like geospatial features or time-series optimization)
e Enhance performance with specialized index types

e Addnew data types or operators

Extend PostgreSQL procedural languages

Why use extensions

Better way to bundle together multiple related functions or features

° Easier to install (CREATE EXTENSION), configure and manage extensions
e Modular architecture

e Community or Third-party involvement

° Reusable Code

Understanding PostgreSQL Extensions

e Built-in (shipped with PostgreSQL) which are Trusted

e Third-Party (developed externally) Extensions, usually Untrusted

e Where to find extensions: contrib modules, PGXN, GitHub, OS package managers
° Extensions are installed per-database, not server-level

e Use cases: performance monitoring (pg_stat_statements), GIS support (PostGIS), encryption (pgcrypto)

Installing and Managing Extensions

° Extensions can be installed via CREATE EXTENSION <name>;

e Listinstalled extensions: \dx or SELECT * FROM pg_extension; in psql

e Todisplay available extensions: SELECT * FROM pg_available_extensions ORDER BY name;
° To Update an extension: ALTER EXTENSION ... UPDATE;

° To Remove an extension: DROP EXTENSION

Extension Directory Structure

e SQL Files (extension--version.sql)
e Control File (extension.control)

e Makefile (compiling with C)
e Shared Libraries and C Code (if applicable)

my_extension/
my_extension.control
my_extension--1.0.sql
Makefile
src/
L— my_extension.c

Developing a Basic Extension

e Either copy to local extension directory or use make install
e Writing the Control File

e Creating SQL Scripts for Functions, Types, or Tables

e Registering Objects with PostgreSQL

e Writein C to gain performance (low-level language)

e Create a GitHub Repo for Community (optional)

Writing Extensions in C

° Use C for performance boost, access to postgres internals

° PostgreSQL Server Programming Interface (SPI) for DB interactions
e Creating Shared Libraries

e Compiling with pg_config and Makefile

Versioning and Upgrades

Naming Convention for Version Scripts. Ex: extension--1.0--1.1.sql

Use ALTER EXTENSION UPDATE to upgrade smoothly

Consider ALTERs over DROPs to preserve user data

Think of backward compatibility, migration scripts

Testing and Debugging Extensions

° Unit Testing with pgTAP
e Enable Logging and Error Handling, with log_min_messages

e Common Debugging Techniques

Packaging and Distribution

° Add README, LICENSE, Makefile, and metadata files
° Distribute via GitHub or PGXN (PostgreSQL Extension Network)

e Consider making it installable via apt, yum, or Homebrew

Security Considerations

Dealing with Privileges (Schema, Table, Function)

Try to avoid Superuser Privileges

Use Trusted Sources for Extensions (contrib, PGXN, reputed GitHub Repos)
Separate/Dedicated schema for extensions

Avoid dynamic SQL injections and unsafe file operations

PostgreSQL Extensions (PostGIS)

Spatial database extender for PostgreSQL

e Allows location queries to be runin SQL

e Supports geometric and geographic types: POINT, LINESTRING, POLYGON, MULTIPOLYGON, etc.
° Hundreds of spatial functions: ST_Contains, ST_Intersects, ST_Distance, ST_Within, etc.

e Completely free and open source under the GNU GPL license

e Use Cases: Storing and querying spatial data (e.g., maps, regions, roads), Finding nearby places, route calculations

PostgreSQL Extensions (postgres_fdw)

e Allows querying remote PostgreSQL servers from a local

° Remote tables usable in SQL queries

° Supports SELECT, INSERT, UPDATE, and DELETE on foreign tables
° Uses PostgreSQL backend connections

° Use Cases: Federated queries, without ETL

PostgreSQL Extensions (pg_stat_statements)

e Tool for query performance monitoring

° Detailed Metrics Collected: Total calls, Total time spent, Min/Max/Mean execution time, Rows returned, Shared/local
block I/O, Temp file usage

° Useful for DBAs to optimize queries, indexes, and app performance

e Works well with tools like pgBadger, pg_stat_monitor, Grafana, etc.

° Use Cases: Identify slow queries, most frequently executed queries

PostgreSQL Extensions (pg_trgm)

e Extension for fuzzy string matching and text search

e Breaks strings into trigrams (three-character chunks) for similarity comparisons

e Enables fuzzy search using %, LIKE, and ILIKE with index support

e Similarity Functions: similarity(text, text), word_similarity(text, text), show_trgm(text)
e Canbe combined with PostgreSQL's full-text search for advanced use cases

e Use Cases: Fuzzy search, Deduplication

PostgreSQL Extensions (pgvector)

e Vector storage in native PostgreSQL format

° Indexing support for fast similarity search

e Supports cosine, inner product, and L2 distance

e Seamless integration with Al models and pipelines

° Use Cases: Semantic search, Recommendation systems, Al/ML applications

PostgreSQL Extensions (pgcrypto)

e Cryptographic functions for data encryption, decryption, hashing, and digital signatures
e Worksinside SQL, so we can encrypt/decrypt datain queries
° Storing encrypted sensitive data (like SSNs, emails, etc.)

° Use Cases: Data Encryption, Password hashing

Conclusion

e Extensions unlock PostgreSQL's true power
° Start small—build SQL-only extensions, move to C if needed

e Contribute to the community: share your work!

Hands On Exercises

References

PostgreSQL Documentation | CREATE EXTENSION Link
10 PostgreSQL extensions you need to know about | PostgreSQL 101 Link
Software Catalogue - PostgreSQL extensions Link

Top 8 PostgreSQL Extensions Link

https://www.postgresql.org/docs/current/sql-createextension.html
https://www.youtube.com/watch?v=FLSLlG1lN5w
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.timescale.com/blog/top-8-postgresql-extensions

